儿科耳鼻喉科中的人工智能:机遇与陷阱的最新综述
Artificial intelligence in pediatric otolaryngology: A state-of-the-art review of opportunities and pitfalls.
作者信息
Navarathna Nithya, Kanhere Adway, Gomez Charlyn, Isaiah Amal
机构信息
Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland Institute for Health Computing, Bethesda, MD, USA.
Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
出版信息
Int J Pediatr Otorhinolaryngol. 2025 Jul;194:112369. doi: 10.1016/j.ijporl.2025.112369. Epub 2025 May 4.
BACKGROUND
Artificial Intelligence (AI) and machine learning (ML) have transformative potential in enhancing diagnostics, treatment planning, and patient management. However, their application in pediatric otolaryngology remains limited as the unique physiological and developmental characteristics of children require tailored AI applications, highlighting a gap in knowledge.
PURPOSE
To provide a narrative review of current literature on the application of AI in pediatric otolaryngology, highlighting knowledge gaps, associated challenges and future directions.
RESULTS
ML models have demonstrated efficacy in diagnosing conditions such as otitis media, adenoid hypertrophy, and pediatric obstructive sleep apnea through deep learning-based image analysis and predictive modeling. AI systems also show potential in surgical settings such as landmark identification during otologic surgery and prediction of middle ear effusion during tympanostomy tube placement. Telemedicine solutions and large language models have shown potential to improve accessibility to care and patient education. The principal challenges include flawed generalization of adult training data and the relative lack of pediatric data.
CONCLUSIONS
AI holds significant promise in pediatric otolaryngology. However, its widespread clinical integration requires addressing algorithmic bias, enhancing model interpretability, and ensuring robust validation across pediatric population. Future research should prioritize federated learning, developmental trajectory modeling, and psychosocial integration to create patient-centered solutions.
背景
人工智能(AI)和机器学习(ML)在增强诊断、治疗规划和患者管理方面具有变革潜力。然而,它们在儿科耳鼻喉科的应用仍然有限,因为儿童独特的生理和发育特征需要量身定制的人工智能应用,这凸显了知识差距。
目的
对人工智能在儿科耳鼻喉科应用的当前文献进行叙述性综述,突出知识差距、相关挑战和未来方向。
结果
机器学习模型已通过基于深度学习的图像分析和预测建模,在诊断中耳炎、腺样体肥大和小儿阻塞性睡眠呼吸暂停等病症方面显示出功效。人工智能系统在手术场景中也具有潜力,如耳科手术中的地标识别以及鼓膜置管期间中耳积液的预测。远程医疗解决方案和大语言模型已显示出改善医疗服务可及性和患者教育的潜力。主要挑战包括成人训练数据的泛化缺陷以及儿科数据相对匮乏。
结论
人工智能在儿科耳鼻喉科具有重大前景。然而,其广泛的临床整合需要解决算法偏差、增强模型可解释性,并确保在儿科人群中进行有力验证。未来研究应优先考虑联邦学习、发育轨迹建模和心理社会整合,以创建以患者为中心的解决方案。
相似文献
Int J Pediatr Otorhinolaryngol. 2025-7
Medicina (Kaunas). 2025-5-22
Front Public Health. 2025-2-13
J Pharmacokinet Pharmacodyn. 2025-6-16
本文引用的文献
Sensors (Basel). 2024-11-6
Int J Pediatr Otorhinolaryngol. 2024-12
Otolaryngol Clin North Am. 2024-10
AJR Am J Roentgenol. 2024-8
Am J Otolaryngol. 2024
Ear Nose Throat J. 2024-4-2