Suppr超能文献

神经网络中的 Skye 斜栅产生的类脑错觉。

Brain-like illusion produced by Skye's Oblique Grating in deep neural networks.

机构信息

Graduate School of Engineering, Kochi University of Technology, Kami, Kochi, Japan.

School of Information, Kochi University of Technology, Kami, Kochi, Japan.

出版信息

PLoS One. 2024 Feb 23;19(2):e0299083. doi: 10.1371/journal.pone.0299083. eCollection 2024.

Abstract

The analogy between the brain and deep neural networks (DNNs) has sparked interest in neuroscience. Although DNNs have limitations, they remain valuable for modeling specific brain characteristics. This study used Skye's Oblique Grating illusion to assess DNNs' relevance to brain neural networks. We collected data on human perceptual responses to a series of visual illusions. This data was then used to assess how DNN responses to these illusions paralleled or differed from human behavior. We performed two analyses:(1) We trained DNNs to perform horizontal vs. non-horizontal classification on images with bars tilted different degrees (non-illusory images) and tested them on images with horizontal bars with different illusory strengths measured by human behavior (illusory images), finding that DNNs showed human-like illusions; (2) We performed representational similarity analysis to assess whether illusory representation existed in different layers within DNNs, finding that DNNs showed illusion-like responses to illusory images. The representational similarity between real tilted images and illusory images was calculated, which showed the highest values in the early layers and decreased layer-by-layer. Our findings suggest that DNNs could serve as potential models for explaining the mechanism of visual illusions in human brain, particularly those that may originate in early visual areas like the primary visual cortex (V1). While promising, further research is necessary to understand the nuanced differences between DNNs and human visual pathways.

摘要

大脑和深度神经网络(DNN)之间的类比引起了神经科学的兴趣。尽管 DNN 存在局限性,但它们对于模拟特定的大脑特征仍然具有价值。本研究使用 Skye 的斜栅错觉来评估 DNN 与大脑神经网络的相关性。我们收集了人类对一系列视觉错觉的感知反应数据。然后,我们使用这些数据来评估 DNN 对这些错觉的反应与人类行为的相似程度或差异程度。我们进行了两项分析:(1)我们训练 DNN 对具有不同倾斜角度的条形的图像进行水平与非水平分类(非错觉图像),并在具有不同错觉强度的水平条形图像上对其进行测试(错觉图像),发现 DNN 表现出类人错觉;(2)我们进行了表示相似性分析,以评估 DNN 内部不同层中是否存在错觉表示,发现 DNN 对错觉图像表现出类似错觉的反应。计算了真实倾斜图像和错觉图像之间的表示相似性,结果表明在早期层中值最高,并且逐层降低。我们的研究结果表明,DNN 可以作为解释人类大脑中视觉错觉机制的潜在模型,特别是那些可能起源于初级视觉皮层(V1)等早期视觉区域的模型。尽管前景广阔,但仍需要进一步研究以了解 DNN 和人类视觉通路之间的细微差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3c/10889903/5e62e59c08e1/pone.0299083.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验