Suppr超能文献

大脑和深度网络中视觉目标表示的定性相似性和差异性。

Qualitative similarities and differences in visual object representations between brains and deep networks.

机构信息

Centre for Neuroscience, Indian Institute of Science, Bangalore, India.

Department of Electrical Communication Engineering, Indian Institute of Science, Bangalore, India.

出版信息

Nat Commun. 2021 Mar 25;12(1):1872. doi: 10.1038/s41467-021-22078-3.

Abstract

Deep neural networks have revolutionized computer vision, and their object representations across layers match coarsely with visual cortical areas in the brain. However, whether these representations exhibit qualitative patterns seen in human perception or brain representations remains unresolved. Here, we recast well-known perceptual and neural phenomena in terms of distance comparisons, and ask whether they are present in feedforward deep neural networks trained for object recognition. Some phenomena were present in randomly initialized networks, such as the global advantage effect, sparseness, and relative size. Many others were present after object recognition training, such as the Thatcher effect, mirror confusion, Weber's law, relative size, multiple object normalization and correlated sparseness. Yet other phenomena were absent in trained networks, such as 3D shape processing, surface invariance, occlusion, natural parts and the global advantage. These findings indicate sufficient conditions for the emergence of these phenomena in brains and deep networks, and offer clues to the properties that could be incorporated to improve deep networks.

摘要

深度神经网络彻底改变了计算机视觉,它们在不同层的物体表示与大脑中的视觉皮层区域大致匹配。然而,这些表示是否表现出人类感知或大脑表示中存在的定性模式尚待解决。在这里,我们根据距离比较重新构建了著名的感知和神经现象,并询问它们是否存在于用于对象识别的前馈深度神经网络中。一些现象在随机初始化的网络中存在,例如全局优势效应、稀疏性和相对大小。许多其他现象在对象识别训练后存在,例如撒切尔效应、镜像混淆、韦伯定律、相对大小、多个对象归一化和相关稀疏性。然而,其他现象在训练网络中不存在,例如 3D 形状处理、表面不变性、遮挡、自然部分和全局优势。这些发现为这些现象在大脑和深度网络中的出现提供了充分的条件,并为可以改进深度网络的特性提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95aa/7994307/51c8a8c53b41/41467_2021_22078_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验