Department of Anesthesiology and Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
AI Center, Korea University College of Medicine, Seoul, Republic of Korea.
Medicine (Baltimore). 2024 Feb 23;103(8):e36909. doi: 10.1097/MD.0000000000036909.
This study uses machine learning and population data to analyze major determinants of blood transfusion among patients with hip arthroplasty. Retrospective cohort data came from Korea National Health Insurance Service claims data for 19,110 patients aged 65 years or more with hip arthroplasty in 2019. The dependent variable was blood transfusion (yes vs no) in 2019 and its 31 predictors were included. Random forest variable importance and Shapley Additive Explanations were used for identifying major predictors and the directions of their associations with blood transfusion. The random forest registered the area under the curve of 73.6%. Based on random forest variable importance, the top-10 predictors were anemia (0.25), tranexamic acid (0.17), age (0.16), socioeconomic status (0.05), spinal anesthesia (0.05), general anesthesia (0.04), sex (female) (0.04), dementia (0.03), iron (0.02), and congestive heart failure (0.02). These predictors were followed by their top-20 counterparts including cardiovascular disease, statin, chronic obstructive pulmonary disease, diabetes mellitus, chronic kidney disease, peripheral vascular disease, liver disease, solid tumor, myocardial infarction and hypertension. In terms of max Shapley Additive Explanations values, these associations were positive, e.g., anemia (0.09), tranexamic acid (0.07), age (0.09), socioeconomic status (0.05), spinal anesthesia (0.05), general anesthesia (0.04), sex (female) (0.02), dementia (0.03), iron (0.04), and congestive heart failure (0.03). For example, the inclusion of anemia, age, tranexamic acid or spinal anesthesia into the random forest will increase the probability of blood transfusion among patients with hip arthroplasty by 9%, 7%, 9% or 5%. Machine learning is an effective prediction model for blood transfusion among patients with hip arthroplasty. The high-risk group with anemia, age and comorbid conditions need to be treated with tranexamic acid, iron and/or other appropriate interventions.
本研究使用机器学习和人群数据来分析髋关节置换术患者输血的主要决定因素。回顾性队列数据来自韩国国家健康保险服务 2019 年为 19110 名 65 岁及以上髋关节置换术患者的索赔数据。因变量为 2019 年的输血(是与否)及其 31 个预测因子。随机森林变量重要性和 Shapley 加法解释用于确定主要预测因子及其与输血的关联方向。随机森林的曲线下面积为 73.6%。基于随机森林变量重要性,排名前 10 的预测因子为贫血(0.25)、氨甲环酸(0.17)、年龄(0.16)、社会经济地位(0.05)、椎管内麻醉(0.05)、全身麻醉(0.04)、性别(女)(0.04)、痴呆(0.03)、铁(0.02)和充血性心力衰竭(0.02)。这些预测因子后面是排名前 20 的预测因子,包括心血管疾病、他汀类药物、慢性阻塞性肺疾病、糖尿病、慢性肾脏病、外周血管疾病、肝病、实体瘤、心肌梗死和高血压。就最大 Shapley 加法解释值而言,这些关联为正相关,例如贫血(0.09)、氨甲环酸(0.07)、年龄(0.09)、社会经济地位(0.05)、椎管内麻醉(0.05)、全身麻醉(0.04)、性别(女)(0.02)、痴呆(0.03)、铁(0.04)和充血性心力衰竭(0.03)。例如,将贫血、年龄、氨甲环酸或椎管内麻醉纳入随机森林会使髋关节置换术患者输血的概率增加 9%、7%、9%或 5%。机器学习是髋关节置换术患者输血的有效预测模型。贫血、年龄和合并症的高危人群需要使用氨甲环酸、铁和/或其他适当的干预措施进行治疗。