Kraus Kim Melanie, Oreshko Maksym, Bernhardt Denise, Combs Stephanie Elisabeth, Peeken Jan Caspar
Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
Institute of Radiation Medicine (IRM), Helmholtz Zentrum München (HMGU) GmbH German Research Center for Environmental Health, Neuherberg, Germany.
Front Oncol. 2023 Mar 15;13:1124592. doi: 10.3389/fonc.2023.1124592. eCollection 2023.
Pneumonitis is a relevant side effect after radiotherapy (RT) and immunotherapy with checkpoint inhibitors (ICIs). Since the effect is radiation dose dependent, the risk increases for high fractional doses as applied for stereotactic body radiation therapy (SBRT) and might even be enhanced for the combination of SBRT with ICI therapy. Hence, patient individual pre-treatment prediction of post-treatment pneumonitis (PTP) might be able to support clinical decision making. Dosimetric factors, however, use limited information and, thus, cannot exploit the full potential of pneumonitis prediction.
We investigated dosiomics and radiomics model based approaches for PTP prediction after thoracic SBRT with and without ICI therapy. To overcome potential influences of different fractionation schemes, we converted physical doses to 2 Gy equivalent doses (EQD2) and compared both results. In total, four single feature models (dosiomics, radiomics, dosimetric, clinical factors) were tested and five combinations of those (dosimetric+clinical factors, dosiomics+radiomics, dosiomics+dosimetric+clinical factors, radiomics+dosimetric+clinical factors, radiomics+dosiomics+dosimetric+clinical factors). After feature extraction, a feature reduction was performed using pearson intercorrelation coefficient and the Boruta algorithm within 1000-fold bootstrapping runs. Four different machine learning models and the combination of those were trained and tested within 100 iterations of 5-fold nested cross validation.
Results were analysed using the area under the receiver operating characteristic curve (AUC). We found the combination of dosiomics and radiomics features to outperform all other models with AUC = 0.79 (95% confidence interval 0.78-0.80) and AUC = 0.77 (0.76-0.78) for physical dose and EQD2, respectively. ICI therapy did not impact the prediction result (AUC ≤ 0.5). Clinical and dosimetric features for the total lung did not improve the prediction outcome.
Our results suggest that combined dosiomics and radiomics analysis can improve PTP prediction in patients treated with lung SBRT. We conclude that pre-treatment prediction could support clinical decision making on an individual patient basis with or without ICI therapy.
肺炎是放射治疗(RT)和使用检查点抑制剂(ICI)进行免疫治疗后的一种相关副作用。由于这种效应与辐射剂量相关,对于立体定向体部放射治疗(SBRT)所采用的高分次剂量,风险会增加,并且SBRT与ICI治疗联合使用时风险甚至可能更高。因此,对患者个体治疗后肺炎(PTP)的治疗前预测可能有助于临床决策。然而,剂量学因素利用的信息有限,因此无法充分发挥肺炎预测的潜力。
我们研究了基于剂量组学和影像组学模型的方法,用于预测接受或未接受ICI治疗的胸部SBRT后的PTP。为了克服不同分割方案的潜在影响,我们将物理剂量转换为2 Gy等效剂量(EQD2)并比较了两种结果。总共测试了四个单特征模型(剂量组学、影像组学、剂量学、临床因素)以及它们的五种组合(剂量学+临床因素、剂量组学+影像组学、剂量组学+剂量学+临床因素、影像组学+剂量学+临床因素、影像组学+剂量组学+剂量学+临床因素)。在特征提取后,使用皮尔逊互相关系数和Boruta算法在1000次自举运行中进行特征约简。在5折嵌套交叉验证的100次迭代中训练和测试了四种不同的机器学习模型及其组合。
使用受试者操作特征曲线下面积(AUC)分析结果。我们发现,对于物理剂量和EQD2,剂量组学和影像组学特征的组合分别以AUC = 0.79(95%置信区间0.78 - 0.80)和AUC = 0.77(0.76 - 0.78)优于所有其他模型。ICI治疗不影响预测结果(AUC≤0.5)。全肺的临床和剂量学特征并未改善预测结果。
我们的结果表明,联合剂量组学和影像组学分析可以改善接受肺部SBRT治疗患者的PTP预测。我们得出结论,治疗前预测可以支持在有或无ICI治疗的情况下基于个体患者的临床决策。