Huang Luocheng, Han Zheyi, Wirth-Singh Anna, Saragadam Vishwanath, Mukherjee Saswata, Fröch Johannes E, Tanguy Quentin A A, Rollag Joshua, Gibson Ricky, Hendrickson Joshua R, Hon Philip W C, Kigner Orrin, Coppens Zachary, Böhringer Karl F, Veeraraghavan Ashok, Majumdar Arka
Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA.
Department of Physics, University of Washington, Seattle, WA, USA.
Nat Commun. 2024 Feb 23;15(1):1662. doi: 10.1038/s41467-024-45904-w.
Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12 μm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.
被称为超光学的亚波长衍射光学器件已展现出显著缩小成像系统尺寸的潜力。然而,尽管有令人印象深刻的展示,但大多数超光学成像系统都存在严重的色差,限制了它们的实用性。在此,我们采用逆向设计来创建工作在长波红外(LWIR)波段(8 - 12微米)的宽带超光学器件。通过一个深度学习辅助的多尺度可微框架,该框架将超原子与相位联系起来,我们在超光学器件的调制传递函数(MTF)表面下最大化波长平均体积。我们的设计框架在单个流程中融合了通过超原子进行的局部相位工程和散射体的全局工程。我们通过制造和实验表征全硅LWIR超光学器件来证实我们的设计。我们设计的超光学器件辅以一个简单的计算后端,可显著提高所捕获图像的质量。我们通过实验证明,对于宽带成像,与传统双曲面金属透镜相比,波长平均斯特列尔比提高了六倍。