Suppr超能文献

用于高质量薄透镜成像的神经纳米光学。

Neural nano-optics for high-quality thin lens imaging.

机构信息

Princeton University, Department of Computer Science, Princeton, NJ, USA.

University of Washington, Department of Electrical and Computer Engineering, Washington, WA, USA.

出版信息

Nat Commun. 2021 Nov 29;12(1):6493. doi: 10.1038/s41467-021-26443-0.

Abstract

Nano-optic imagers that modulate light at sub-wavelength scales could enable new applications in diverse domains ranging from robotics to medicine. Although metasurface optics offer a path to such ultra-small imagers, existing methods have achieved image quality far worse than bulky refractive alternatives, fundamentally limited by aberrations at large apertures and low f-numbers. In this work, we close this performance gap by introducing a neural nano-optics imager. We devise a fully differentiable learning framework that learns a metasurface physical structure in conjunction with a neural feature-based image reconstruction algorithm. Experimentally validating the proposed method, we achieve an order of magnitude lower reconstruction error than existing approaches. As such, we present a high-quality, nano-optic imager that combines the widest field-of-view for full-color metasurface operation while simultaneously achieving the largest demonstrated aperture of 0.5 mm at an f-number of 2.

摘要

纳米光学成像仪可以在亚波长尺度上调制光,从而在从机器人技术到医学等各个领域实现新的应用。虽然超表面光学为这种超小型成像仪提供了一种途径,但现有方法所实现的图像质量远远差于体积庞大的折射替代品,这主要是由于大孔径和低 f 数的像差所限制。在这项工作中,我们通过引入一种神经纳米光学成像仪来缩小这一性能差距。我们设计了一个完全可微分的学习框架,该框架可以学习超表面物理结构以及基于神经的特征图像重建算法。通过实验验证了所提出的方法,我们实现了比现有方法低一个数量级的重建误差。因此,我们提出了一种高质量的纳米光学成像仪,它结合了最大视场,可实现全彩色超表面操作,同时在 f 数为 2 的情况下实现了最大的 0.5 毫米孔径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7402/8630181/db00fd852459/41467_2021_26443_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验