Princeton University, Department of Computer Science, Princeton, NJ, USA.
University of Washington, Department of Electrical and Computer Engineering, Washington, WA, USA.
Nat Commun. 2021 Nov 29;12(1):6493. doi: 10.1038/s41467-021-26443-0.
Nano-optic imagers that modulate light at sub-wavelength scales could enable new applications in diverse domains ranging from robotics to medicine. Although metasurface optics offer a path to such ultra-small imagers, existing methods have achieved image quality far worse than bulky refractive alternatives, fundamentally limited by aberrations at large apertures and low f-numbers. In this work, we close this performance gap by introducing a neural nano-optics imager. We devise a fully differentiable learning framework that learns a metasurface physical structure in conjunction with a neural feature-based image reconstruction algorithm. Experimentally validating the proposed method, we achieve an order of magnitude lower reconstruction error than existing approaches. As such, we present a high-quality, nano-optic imager that combines the widest field-of-view for full-color metasurface operation while simultaneously achieving the largest demonstrated aperture of 0.5 mm at an f-number of 2.
纳米光学成像仪可以在亚波长尺度上调制光,从而在从机器人技术到医学等各个领域实现新的应用。虽然超表面光学为这种超小型成像仪提供了一种途径,但现有方法所实现的图像质量远远差于体积庞大的折射替代品,这主要是由于大孔径和低 f 数的像差所限制。在这项工作中,我们通过引入一种神经纳米光学成像仪来缩小这一性能差距。我们设计了一个完全可微分的学习框架,该框架可以学习超表面物理结构以及基于神经的特征图像重建算法。通过实验验证了所提出的方法,我们实现了比现有方法低一个数量级的重建误差。因此,我们提出了一种高质量的纳米光学成像仪,它结合了最大视场,可实现全彩色超表面操作,同时在 f 数为 2 的情况下实现了最大的 0.5 毫米孔径。