National Cancer Institute, LT-08406 Vilnius, Lithuania.
Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania.
Biomolecules. 2024 Jan 31;14(2):171. doi: 10.3390/biom14020171.
The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histologically and clinically distinct immune subtypes-desert (no TILs), excluded (TILs in stroma), and inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still requires deeper experimental evidence across various cancer types. Here, we aimed to investigate, define, and validate the immune subtypes in melanoma by coupling transcriptional and histological assessments of the lymphocyte distribution in tumor parenchyma and stroma. We used the transcriptomic data from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, and inflamed immune subtypes. We defined subtype-specific genes and used them to construct a subtype assignment algorithm. We validated the two-step algorithm in the qPCR data of real-world melanoma tumors with histologically defined immune subtypes. The accuracy of a classifier encompassing expression data of seven genes (immune response-related: , , , and ; and stroma-related: , , and ) in a validation cohort reached 79%. Our findings suggest that melanoma tumors can be classified into transcriptionally and histologically distinct desert, excluded, and inflamed subtypes. Gene expression-based algorithms can assist physicians and pathologists as biomarkers in the rapid assessment of a tumor immune microenvironment while serving as a tool for clinical decision making.
肿瘤浸润淋巴细胞 (TILs) 的空间分布定义了几种在组织学和临床上明显不同的免疫亚型——荒漠型(无 TILs)、排除型(TILs 在基质中)和炎症型(TILs 在肿瘤实质中)。迄今为止,在不同的癌症类型中,仍需要更深入的实验证据来对免疫亚型进行稳健分类。在这里,我们旨在通过结合肿瘤实质和基质中淋巴细胞分布的转录组和组织学评估,来研究、定义和验证黑色素瘤中的免疫亚型。我们使用来自癌症基因组图谱黑色素瘤数据集的转录组数据筛选荒漠型、排除型和炎症型免疫亚型。我们定义了亚型特异性基因,并使用它们构建了一个亚型分配算法。我们在具有组织学定义的免疫亚型的真实世界黑色素瘤肿瘤的 qPCR 数据中验证了两步算法。包含七个基因(免疫反应相关: 、 、 、 和 ;以及基质相关: 、 、 和 )表达数据的分类器在验证队列中的准确率达到 79%。我们的研究结果表明,黑色素瘤肿瘤可以分为转录组和组织学上明显不同的荒漠型、排除型和炎症型亚型。基于基因表达的算法可以作为临床决策的工具,为医生和病理学家提供快速评估肿瘤免疫微环境的生物标志物。