Roche Pharma Research and Early Development, Early Development Oncology, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, F. Hoffmann-La Roche Ltd, Basel, Switzerland
J Immunother Cancer. 2024 Apr 22;12(4):e008185. doi: 10.1136/jitc-2023-008185.
The immune status of a patient's tumor microenvironment (TME) may guide therapeutic interventions with cancer immunotherapy and help identify potential resistance mechanisms. Currently, patients' immune status is mostly classified based on CD8+tumor-infiltrating lymphocytes. An unmet need exists for comparable and reliable precision immunophenotyping tools that would facilitate clinical treatment-relevant decision-making and the understanding of how to overcome resistance mechanisms.
We systematically analyzed the CD8 immunophenotype of 2023 patients from 14 phase I-III clinical trials using immunohistochemistry (IHC) and additionally profiled gene expression by RNA-sequencing (RNA-seq). CD8 immunophenotypes were classified by pathologists into CD8-desert, CD8-excluded or CD8-inflamed tumors using CD8 IHC staining in epithelial and stromal areas of the tumor. Using regularized logistic regression, we developed an RNA-seq-based classifier as a surrogate to the IHC-based spatial classification of CD8+tumor-infiltrating lymphocytes in the TME.
The CD8 immunophenotype and associated gene expression patterns varied across indications as well as across primary and metastatic lesions. Melanoma and kidney cancers were among the strongest inflamed indications, while CD8-desert phenotypes were most abundant in liver metastases across all tumor types. A good correspondence between the transcriptome and the IHC-based evaluation enabled us to develop a 92-gene classifier that accurately predicted the IHC-based CD8 immunophenotype in primary and metastatic samples (area under the curve inflamed=0.846; excluded=0.712; desert=0.855). The newly developed classifier was prognostic in The Cancer Genome Atlas (TCGA) data and predictive in lung cancer: patients with predicted CD8-inflamed tumors showed prolonged overall survival (OS) versus patients with CD8-desert tumors (HR 0.88; 95% CI 0.80 to 0.97) across TCGA, and longer OS on immune checkpoint inhibitor administration (phase III OAK study) in non-small-cell lung cancer (HR 0.75; 95% CI 0.58 to 0.97).
We provide a new precision immunophenotyping tool based on gene expression that reflects the spatial infiltration patterns of CD8+ lymphocytes in tumors. The classifier enables multiplex analyses and is easy to apply for retrospective, reverse translation approaches as well as for prospective patient enrichment to optimize the response to cancer immunotherapy.
患者肿瘤微环境(TME)的免疫状态可能指导癌症免疫治疗的治疗干预,并有助于识别潜在的耐药机制。目前,患者的免疫状态主要基于 CD8+肿瘤浸润淋巴细胞进行分类。因此,需要一种具有可比性和可靠性的精准免疫表型工具,以促进临床治疗相关决策,并了解如何克服耐药机制。
我们使用免疫组织化学(IHC)系统地分析了来自 14 项 I 期至 III 期临床试验的 2023 名患者的 CD8 免疫表型,并通过 RNA 测序(RNA-seq)进一步分析了基因表达。病理学家使用 CD8 IHC 染色对肿瘤上皮和基质区域进行染色,将 CD8 免疫表型分为 CD8-荒漠型、CD8-排除型或 CD8-浸润型肿瘤。我们使用正则化逻辑回归方法,基于 RNA-seq 建立了一个分类器,作为 TME 中 CD8+肿瘤浸润淋巴细胞的空间分类的替代方法。
CD8 免疫表型和相关基因表达模式在不同的适应证、原发性和转移性病变中均存在差异。黑色素瘤和肾癌是最强的炎症性适应证,而在所有肿瘤类型中,CD8-荒漠型表型在肝转移中最为常见。基于转录组和 IHC 评估之间的良好对应关系,我们开发了一个 92 基因的分类器,可以准确预测原发性和转移性样本中的 IHC 基于 CD8 免疫表型(炎症=0.846;排除=0.712;荒漠=0.855)。在癌症基因组图谱(TCGA)数据中,新开发的分类器具有预后价值,在肺癌中具有预测价值:与 CD8-荒漠型肿瘤患者相比,预测为 CD8-浸润型肿瘤的患者在 TCGA 中具有更长的总生存期(OS)(HR 0.88;95%CI 0.80 至 0.97),在非小细胞肺癌的免疫检查点抑制剂治疗(III 期 OAK 研究)中具有更长的 OS(HR 0.75;95%CI 0.58 至 0.97)。
我们提供了一种基于基因表达的新的精准免疫表型工具,反映了 CD8+淋巴细胞在肿瘤中的空间浸润模式。该分类器支持多重分析,易于应用于回顾性、反向翻译方法以及前瞻性患者富集,以优化对癌症免疫治疗的反应。