Suppr超能文献

使用国家医院数据库开发的逻辑回归模型在分析手术治疗的肺癌方面,其有效性是否低于基于临床数据库开发的模型?

Is the Validity of Logistic Regression Models Developed with a National Hospital Database Inferior to Models Developed from Clinical Databases to Analyze Surgical Lung Cancers?

作者信息

Bernard Alain, Cottenet Jonathan, Quantin Catherine

机构信息

Department of Thoracic and Cardiovascular Surgery, Dijon University Hospital, 21000 Dijon, France.

Service de Biostatistiques et d'Information Médicale (DIM), CHU Dijon Bourgogne, Inserm, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, 21000 Dijon, France.

出版信息

Cancers (Basel). 2024 Feb 9;16(4):734. doi: 10.3390/cancers16040734.

Abstract

In national hospital databases, certain prognostic factors cannot be taken into account. The main objective was to estimate the performance of two models based on two databases: the Epithor clinical database and the French hospital database. For each of the two databases, we randomly sampled a training dataset with 70% of the data and a validation dataset with 30%. The performance of the models was assessed with the Brier score, the area under the receiver operating characteristic (AUC ROC) curve and the calibration of the model. For Epithor and the hospital database, the training dataset included 10,516 patients (with resp. 227 (2.16%) and 283 (2.7%) deaths) and the validation dataset included 4507 patients (with resp. 93 (2%) and 119 (2.64%) deaths). A total of 15 predictors were selected in the models (including FEV1, body mass index, ASA score and TNM stage for Epithor). The Brier score values were similar in the models of the two databases. For validation data, the AUC ROC curve was 0.73 [0.68-0.78] for Epithor and 0.8 [0.76-0.84] for the hospital database. The slope of the calibration plot was less than 1 for the two databases. This work showed that the performance of a model developed from a national hospital database is nearly as good as a performance obtained with Epithor, but it lacks crucial clinical variables such as FEV1, ASA score, or TNM stage.

摘要

在国家医院数据库中,某些预后因素无法被考虑在内。主要目的是基于两个数据库评估两种模型的性能:Epithor临床数据库和法国医院数据库。对于这两个数据库中的每一个,我们随机抽取了一个包含70%数据的训练数据集和一个包含30%数据的验证数据集。使用Brier评分、受试者操作特征曲线下面积(AUC ROC)以及模型校准来评估模型的性能。对于Epithor数据库和医院数据库,训练数据集包括10516名患者(分别有227例(2.16%)和283例(2.7%)死亡),验证数据集包括4507名患者(分别有93例(2%)和119例(2.64%)死亡)。模型中总共选择了15个预测因子(对于Epithor数据库,包括第一秒用力呼气容积、体重指数、美国麻醉医师协会(ASA)评分和TNM分期)。两个数据库模型中的Brier评分值相似。对于验证数据,Epithor数据库的AUC ROC曲线为0.73[0.68 - 0.78],医院数据库的为0.8[0.76 - 0.84]。两个数据库校准图的斜率均小于1。这项工作表明,从国家医院数据库开发的模型性能与使用Epithor数据库获得的性能几乎一样好,但它缺少关键的临床变量,如第一秒用力呼气容积、ASA评分或TNM分期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82bb/10886576/3ce7a437af9c/cancers-16-00734-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验