Sim Sungdae, Sock Juil, Kwak Kiho
Agency for Defense Development, P.O.Box 35, Yuseong, Daejeon 34186, Korea.
Sensors (Basel). 2016 Jun 22;16(6):933. doi: 10.3390/s16060933.
LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches.
激光雷达和摄像头已广泛应用于计算机视觉和自动驾驶车辆应用中。然而,为了在局部坐标系之间转换数据,我们必须估计传感器之间的刚体变换。在本文中,我们提出了一种鲁棒的外部校准算法,该算法易于实现且校准误差小。通过最小化投影到图像平面上的对应特征之间的距离来估计外部校准参数。这些特征是V形校准目标上的边缘和中心线特征。所提出的算法从两个方面有助于提高校准精度。首先,根据特征的对应精度,我们对一个点与线特征之间的距离使用不同的权重。其次,我们应用一个惩罚函数来排除校准数据集中异常值的影响。此外,基于我们针对单个激光雷达-摄像头对的鲁棒校准方法,我们引入了一种联合校准,通过最小化具有闭环约束的一个目标函数来一次性估计多个传感器的外部参数。我们进行了多项实验来评估我们的外部校准算法的性能。实验结果表明,我们的校准方法比其他方法具有更好的性能。