Suppr超能文献

多激光雷达-多相机系统的精确标定。

Accurate Calibration of Multi-LiDAR-Multi-Camera Systems.

机构信息

Geometric Computer Vision Group, Machine Perception Laboratory, MTA SZTAKI, Kende st. 17, 1111 Budapest, Hungary.

Department of Algorithms and Their Applications, Eötvös Loránd University, Pázmány Péter stny. 1/C., 1117 Budapest, Hungary.

出版信息

Sensors (Basel). 2018 Jul 3;18(7):2139. doi: 10.3390/s18072139.

Abstract

As autonomous driving attracts more and more attention these days, the algorithms and sensors used for machine perception become popular in research, as well. This paper investigates the extrinsic calibration of two frequently-applied sensors: the camera and Light Detection and Ranging (LiDAR). The calibration can be done with the help of ordinary boxes. It contains an iterative refinement step, which is proven to converge to the box in the LiDAR point cloud, and can be used for system calibration containing multiple LiDARs and cameras. For that purpose, a bundle adjustment-like minimization is also presented. The accuracy of the method is evaluated on both synthetic and real-world data, outperforming the state-of-the-art techniques. The method is general in the sense that it is both LiDAR and camera-type independent, and only the intrinsic camera parameters have to be known. Finally, a method for determining the 2D bounding box of the car chassis from LiDAR point clouds is also presented in order to determine the car body border with respect to the calibrated sensors.

摘要

随着自动驾驶技术越来越受到关注,用于机器感知的算法和传感器也在研究中变得流行。本文研究了两种常用传感器(相机和激光雷达)的外部校准。校准可以借助普通盒子完成。它包含一个迭代细化步骤,该步骤被证明可以收敛到激光雷达点云中的盒子,并可用于包含多个激光雷达和相机的系统校准。为此,还提出了类似于束调整的最小化。该方法在合成和真实世界数据上的准确性都优于最新技术。该方法是通用的,因为它既与激光雷达和相机类型无关,而且只需要知道相机的固有参数。最后,还提出了一种从激光雷达点云中确定汽车底盘二维边界框的方法,以便根据校准后的传感器确定车身边界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f45/6069280/bc62511b81f0/sensors-18-02139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验