Suppr超能文献

使用摇篮式头部伺服电机在智能手机上进行实时运动物体跟踪。

Real-Time Moving Object Tracking on Smartphone Using Cradle Head Servo Motor.

作者信息

Han Neunggyu, Ryu Sun Joo, Nam Yunyoung

机构信息

Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea.

Department of Enterprise School, Soonchunhyang University, Asan 31538, Republic of Korea.

出版信息

Sensors (Basel). 2024 Feb 16;24(4):1265. doi: 10.3390/s24041265.

Abstract

The increasing demand for artificially intelligent smartphone cradles has prompted the need for real-time moving object detection. Real-time moving object tracking requires the development of algorithms for instant tracking analysis without delays. In particular, developing a system for smartphones should consider different operating systems and software development environments. Issues in current real-time moving object tracking systems arise when small and large objects coexist, causing the algorithm to prioritize larger objects or struggle with consistent tracking across varying scales. Fast object motion further complicates accurate tracking and leads to potential errors and misidentification. To address these issues, we propose a deep learning-based real-time moving object tracking system which provides an accuracy priority mode and a speed priority mode. The accuracy priority mode achieves a balance between the high accuracy and speed required in the smartphone environment. The speed priority mode optimizes the speed of inference to track fast-moving objects. The accuracy priority mode incorporates CSPNet with ResNet to maintain high accuracy, whereas the speed priority mode simplifies the complexity of the convolutional layer while maintaining accuracy. In our experiments, we evaluated both modes in terms of accuracy and speed.

摘要

对人工智能智能手机支架的需求不断增加,促使人们需要进行实时移动物体检测。实时移动物体跟踪需要开发即时跟踪分析算法,且不能有延迟。特别是,开发智能手机系统应考虑不同的操作系统和软件开发环境。当大小物体共存时,当前实时移动物体跟踪系统会出现问题,导致算法优先处理较大物体,或者在不同尺度上进行一致跟踪时遇到困难。快速的物体运动进一步使精确跟踪变得复杂,并导致潜在的错误和误识别。为了解决这些问题,我们提出了一种基于深度学习的实时移动物体跟踪系统,该系统提供了精度优先模式和速度优先模式。精度优先模式在智能手机环境所需的高精度和速度之间取得平衡。速度优先模式优化推理速度以跟踪快速移动的物体。精度优先模式将CSPNet与ResNet相结合以保持高精度,而速度优先模式在保持精度的同时简化了卷积层的复杂性。在我们的实验中,我们从精度和速度方面对这两种模式进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe54/10891943/43f701b16f91/sensors-24-01265-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验