Suppr超能文献

基于中国高分二号PMS影像利用多尺度特征融合与监督学习方法绘制玉米秸秆覆盖类型图

Mapping the Corn Residue-Covered Types Using Multi-Scale Feature Fusion and Supervised Learning Method by Chinese GF-2 PMS Image.

作者信息

Tao Wancheng, Dong Yi, Su Wei, Li Jiayu, Xuan Fu, Huang Jianxi, Yang Jianyu, Li Xuecao, Zeng Yelu, Li Baoguo

机构信息

College of Land Science and Technology, China Agricultural University, Beijing, China.

Key Laboratory of Remote Sensing for Agri-Hazards, Ministry of Agriculture, Beijing, China.

出版信息

Front Plant Sci. 2022 Jun 21;13:901042. doi: 10.3389/fpls.2022.901042. eCollection 2022.

Abstract

The management of crop residue covering is a vital part of conservation tillage, which protects black soil by reducing soil erosion and increasing soil organic carbon. Accurate and rapid classification of corn residue-covered types is significant for monitoring crop residue management. The remote sensing technology using high spatial resolution images is an effective means to classify the crop residue-covered areas quickly and objectively in the regional area. Unfortunately, the classification of crop residue-covered area is tricky because there is intra-object heterogeneity, as a two-edged sword of high resolution, and spectral confusion resulting from different straw mulching ways. Therefore, this study focuses on exploring the multi-scale feature fusion method and classification method to classify the corn residue-covered areas effectively and accurately using Chinese high-resolution GF-2 PMS images in the regional area. First, the multi-scale image features are built by compressing pixel domain details with the wavelet and principal component analysis (PCA), which has been verified to effectively alleviate intra-object heterogeneity of corn residue-covered areas on GF-2 PMS images. Second, the optimal image dataset (OID) is identified by comparing model accuracy based on the fusion of different features. Third, the 1D-CNN_CA method is proposed by combining one-dimensional convolutional neural networks (1D-CNN) and attention mechanisms, which are used to classify corn residue-covered areas based on the OID. Comparison of the naive Bayesian (NB), random forest (RF), support vector machine (SVM), and 1D-CNN methods indicate that the residue-covered areas can be classified effectively using the 1D-CNN-CA method with the highest accuracy (: 96.92% and overall accuracy (): 97.26%). Finally, the most appropriate machine learning model and the connected domain calibration method are combined to improve the visualization, which are further used to classify the corn residue-covered areas into three covering types. In addition, the study showed the superiority of multi-scale image features by comparing the contribution of the different image features in the classification of corn residue-covered areas.

摘要

作物残茬覆盖管理是保护性耕作的重要组成部分,它通过减少土壤侵蚀和增加土壤有机碳来保护黑土。准确快速地分类玉米残茬覆盖类型对于监测作物残茬管理具有重要意义。利用高空间分辨率图像的遥感技术是在区域范围内快速、客观地分类作物残茬覆盖区域的有效手段。不幸的是,作物残茬覆盖区域的分类很棘手,因为存在目标内异质性,这是高分辨率的双刃剑,以及不同秸秆覆盖方式导致的光谱混淆。因此,本研究重点探索多尺度特征融合方法和分类方法,以利用中国高分辨率GF-2 PMS图像在区域范围内有效、准确地分类玉米残茬覆盖区域。首先,通过小波和主成分分析(PCA)压缩像素域细节来构建多尺度图像特征,这已被验证能有效缓解GF-2 PMS图像上玉米残茬覆盖区域的目标内异质性。其次,通过比较基于不同特征融合的模型精度来确定最优图像数据集(OID)。第三,提出了结合一维卷积神经网络(1D-CNN)和注意力机制的1D-CNN_CA方法,用于基于OID对玉米残茬覆盖区域进行分类。朴素贝叶斯(NB)、随机森林(RF)、支持向量机(SVM)和1D-CNN方法的比较表明,使用1D-CNN-CA方法可以有效地对残茬覆盖区域进行分类,其精度最高(:96.92%),总体精度(:97.26%)。最后,将最合适的机器学习模型和连通域校准方法相结合以改善可视化效果,进一步将玉米残茬覆盖区域分为三种覆盖类型。此外,通过比较不同图像特征在玉米残茬覆盖区域分类中的贡献,该研究展示了多尺度图像特征的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/383e/9253822/55a6ef429654/fpls-13-901042-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验