Suppr超能文献

一种用于定义稳态期间主动脉血流和压力平均心动周期的简单算法。

A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state.

作者信息

Burattini R, Fioretti S, Jetto L

出版信息

Comput Biomed Res. 1985 Aug;18(4):303-12. doi: 10.1016/0010-4809(85)90010-2.

Abstract

A fast procedure for defining a cardiac cycle using simultaneously recorded and digitized aortic flow and pressure is presented. A simple algorithm, based on a double-threshold method, initially involves singling the dicrotic notch of flow in order to separate contiguous cardiac cycles during a given steady state. The individual cycles are carried back to a common origin of time, then they are normalized to the mean length and averaged. As a result of an averaging operation the algorithm gives a "mean cycle" of both pulsatile aortic pressure and flow. An "a posteriori" analysis of the noise components in the data has been carried out in order to justify the averaging operation. The "mean cycle" of aortic flow and pressure are suitable to be used as the input quantities of the automatic identification procedures recently assessed to estimate the parameters of simple models of the arterial input impedance. Our algorithm was defined and implemented as a FORTRAN program for a digital PDP 11/24 computer. This algorithm was tested by using pressure and flow data measured in the ascending aorta of dogs. About 26 sec were necessary to select 10 cardiac cycles (each one being about 200 samples long) of both flow and pressure in sequences of 2500 samples per signal and to compute the respective "mean cycles." Total peripheral resistance, total arterial compliance, and aortic characteristic impedance were estimated by aid of the simple three-element windkessel model. The results obtained by our method of determining parameters on the "mean cycle" of aortic pressure and flow were compared to the results obtained by averaging the parameters determined on each heart cycle.

摘要

本文介绍了一种利用同步记录并数字化的主动脉血流和压力来定义心动周期的快速程序。一种基于双阈值法的简单算法,最初涉及找出血流的重搏切迹,以便在给定的稳定状态下分离连续的心动周期。将各个周期回溯到共同的时间原点,然后将它们归一化到平均长度并求平均值。作为平均运算的结果,该算法给出了搏动性主动脉压力和血流的“平均周期”。为了证明平均运算的合理性,对数据中的噪声成分进行了“后验”分析。主动脉血流和压力的“平均周期”适合用作最近评估的自动识别程序的输入量,以估计动脉输入阻抗简单模型的参数。我们的算法是用FORTRAN语言为数字PDP 11/24计算机定义并实现的。该算法通过使用在狗的升主动脉中测量的压力和血流数据进行了测试。在每个信号2500个样本的序列中选择10个心动周期(每个周期约200个样本)的血流和压力,并计算各自的“平均周期”,大约需要26秒。借助简单的三元风箱模型估计了总外周阻力、总动脉顺应性和主动脉特性阻抗。将我们通过对主动脉压力和血流的“平均周期”确定参数的方法所获得的结果,与通过对每个心动周期确定的参数求平均值所获得的结果进行了比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验