Suppr超能文献

通过基因组预测和选择指数提高葡萄育种效率。

Enhancing grapevine breeding efficiency through genomic prediction and selection index.

机构信息

UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France.

Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France.

出版信息

G3 (Bethesda). 2024 Apr 3;14(4). doi: 10.1093/g3journal/jkae038.

Abstract

Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20-25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.

摘要

葡萄(Vitis vinifera)育种正处于关键时刻。每年都会推出新的品种,具有抗白粉病和霜霉病的能力。然而,传统的过程仍然耗时,需要 20-25 年,并且需要评估新的特性,以增强葡萄对气候变化的适应能力。到目前为止,选择过程一直依赖于表型数据和有限数量的分子标记来评估简单的遗传特性,如对病原体的抗性,而没有明确的理想型概念,而且是在大规模进行的。为了加速育种过程并解决这些挑战,我们研究了基因组预测的应用,这是一种使用分子标记来预测基因型值的方法。在我们的研究中,我们专注于现有的两个葡萄育种计划:玫瑰酒和干邑白兰地生产。在这些计划中,通过对具有代表性的和种间抗白粉病和霜霉病的品种进行杂交,创建了几个家族。每个计划都评估了 30 个特性,使用了 2 种基因组预测方法:基因组最佳线性无偏预测和最小绝对收缩选择算子。结果表明,预测能力在不同特性之间存在很大的差异,从 0 到 0.9 不等。这些差异可能归因于特性遗传力和特性特征等因素。此外,我们通过利用其他葡萄群体作为训练集,探索了跨群体基因组预测的潜力。通过使用多元选择指数方法,整合基因组预测可以识别每个计划的优秀个体。与葡萄酒行业的代表合作,为每个育种计划定义了理想型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/813a/10989862/94c653956cd1/jkae038f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验