University of Tennessee Knoxville, Knoxville, Tennessee; Joe Gibbs Human Performance Institute, Huntersville, North Carolina.
University of Tennessee Knoxville, Knoxville, Tennessee; Army Research Lab, Aberdeen, Maryland.
Biophys J. 2024 Sep 3;123(17):2781-2789. doi: 10.1016/j.bpj.2024.01.025. Epub 2024 Feb 22.
The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. Two of the ways brains encode spatial information are through head direction cells and grid cells. Brains use head direction cells to determine orientation, whereas grid cells consist of layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single head direction or grid. We want to capture this firing structure and use it to decode head direction and animal location from head direction and grid cell activity. Understanding, representing, and decoding these neural structures require models that encompass higher-order connectivity, more than the one-dimensional connectivity that traditional graph-based models provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network. Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the simplicial convolutional neural network is demonstrated on head direction and trajectory prediction via head direction and grid cell datasets.
大脑的空间定向系统使用不同的神经元集合来辅助基于环境的导航。大脑编码空间信息的两种方式是通过头方向细胞和网格细胞。大脑使用头方向细胞来确定方向,而网格细胞由排列在一起的层状神经元组成,以提供基于环境的导航。这些神经元在集合中发射,其中几个神经元同时发射以激活单个头方向或网格。我们希望捕捉到这种发射结构,并利用它来对头方向和网格细胞活动进行解码,以确定头方向和动物的位置。理解、表示和解码这些神经结构需要模型来涵盖更高阶的连接,而不仅仅是传统基于图的模型提供的一维连接。为此,在这项工作中,我们开发了一种拓扑深度学习框架来对头方向和轨迹进行解码。我们的框架通过一种新的架构,将无监督单纯形复形发现与深度学习的强大功能相结合,我们称之为单纯形卷积递归神经网络。单纯复形是一种拓扑空间,不仅使用顶点和边,还使用更高维的对象,它自然地推广了图,并不仅仅捕捉了成对关系。此外,这种方法不需要超越尖峰计数的神经活动的先验知识,从而消除了对相似性度量的需求。单纯形卷积神经网络的有效性和多功能性在头方向和轨迹预测方面通过头方向和网格细胞数据集得到了证明。