Suppr超能文献

神经镶嵌图:使用代数拓扑和生成式人工智能检测异常脑交互

Neural Mosaics: Detecting Aberrant Brain Interactions using Algebraic Topology and Generative Artificial Intelligence.

作者信息

Prantzalos Katrina, Upadhyaya Dipak, Golnari Pedram, Fernandez-BacaVaca Guadalupe, Aispuro Geronimo Pacheco, Salehizadeh Saeideh, Thyagaraj Suraj, Gurski Nick, Yoshimoto Kenneth, Sivagnanam Subhashini, Majumdar Amitava, Sahoo Satya S

机构信息

Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.

Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.

出版信息

AMIA Annu Symp Proc. 2025 May 22;2024:920-929. eCollection 2024.

Abstract

Epilepsy affects over 50 million persons worldwide, with less than 50% achieving long-term success following surgery. Traditional electrophysiology signal-based seizure detection methods are resource-intensive, laborious, and overlook multifocal brain interactions. Algebraic topology methods, particularly persistent homology, offer robust representations of complex brain interaction patterns. Leveraging persistent homology and the Google Gemini Pro Vision 1.0 large language model (LLM), we present a novel prompting template to classify topological structures computed from intracranial electroencephalography (iEEG) recordings from refractory epilepsy patients. This study marks the first use of persistence diagrams as input to a LLM for analyzing brain interaction dynamics. Our results indicate that simply prompting LLMs with persistence diagrams is insufficient for accurate seizure detection. Nonetheless, unlike traditional approaches using machine learning algorithms for EEG classification, our approach does not require large volumes of representative training data or brittle hyperparameter tuning, which highlights the promise of more scalable analyses in the future.

摘要

癫痫在全球影响着超过5000万人,手术后长期成功的比例不到50%。传统的基于电生理信号的癫痫发作检测方法资源消耗大、费力,且忽略了多灶性脑交互作用。代数拓扑方法,特别是持久同调,能提供复杂脑交互模式的稳健表示。利用持久同调以及谷歌Gemini Pro Vision 1.0大语言模型(LLM),我们提出了一种新颖的提示模板,用于对从难治性癫痫患者的颅内脑电图(iEEG)记录中计算出的拓扑结构进行分类。本研究标志着首次将持久图作为大语言模型的输入来分析脑交互动力学。我们的结果表明,仅用持久图提示大语言模型不足以进行准确的癫痫发作检测。尽管如此,与使用机器学习算法进行脑电图分类的传统方法不同,我们的方法不需要大量具有代表性的训练数据或脆弱的超参数调整,这凸显了未来更具扩展性分析的前景。

相似文献

5
Machine learning applications in epilepsy.机器学习在癫痫中的应用。
Epilepsia. 2019 Oct;60(10):2037-2047. doi: 10.1111/epi.16333. Epub 2019 Sep 3.
7
Seizure Forecasting and the Preictal State in Canine Epilepsy.犬癫痫的发作预测与发作前期状态
Int J Neural Syst. 2017 Feb;27(1):1650046. doi: 10.1142/S0129065716500465. Epub 2016 Jun 14.

本文引用的文献

2
A topological deep learning framework for neural spike decoding.用于神经尖峰解码的拓扑深度学习框架。
Biophys J. 2024 Sep 3;123(17):2781-2789. doi: 10.1016/j.bpj.2024.01.025. Epub 2024 Feb 22.
7
A roadmap for the computation of persistent homology.持久同调计算路线图。
EPJ Data Sci. 2017;6(1):17. doi: 10.1140/epjds/s13688-017-0109-5. Epub 2017 Aug 9.
9
Topological Data Analysis of Single-Trial Electroencephalographic Signals.单次试验脑电图信号的拓扑数据分析
Ann Appl Stat. 2018 Sep;12(3):1506-1534. doi: 10.1214/17-AOAS1119. Epub 2018 Sep 11.
10
Cliques and cavities in the human connectome.人类连接组中的团块和空洞。
J Comput Neurosci. 2018 Feb;44(1):115-145. doi: 10.1007/s10827-017-0672-6. Epub 2017 Nov 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验