Prantzalos Katrina, Upadhyaya Dipak, Golnari Pedram, Fernandez-BacaVaca Guadalupe, Aispuro Geronimo Pacheco, Salehizadeh Saeideh, Thyagaraj Suraj, Gurski Nick, Yoshimoto Kenneth, Sivagnanam Subhashini, Majumdar Amitava, Sahoo Satya S
Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
AMIA Annu Symp Proc. 2025 May 22;2024:920-929. eCollection 2024.
Epilepsy affects over 50 million persons worldwide, with less than 50% achieving long-term success following surgery. Traditional electrophysiology signal-based seizure detection methods are resource-intensive, laborious, and overlook multifocal brain interactions. Algebraic topology methods, particularly persistent homology, offer robust representations of complex brain interaction patterns. Leveraging persistent homology and the Google Gemini Pro Vision 1.0 large language model (LLM), we present a novel prompting template to classify topological structures computed from intracranial electroencephalography (iEEG) recordings from refractory epilepsy patients. This study marks the first use of persistence diagrams as input to a LLM for analyzing brain interaction dynamics. Our results indicate that simply prompting LLMs with persistence diagrams is insufficient for accurate seizure detection. Nonetheless, unlike traditional approaches using machine learning algorithms for EEG classification, our approach does not require large volumes of representative training data or brittle hyperparameter tuning, which highlights the promise of more scalable analyses in the future.
癫痫在全球影响着超过5000万人,手术后长期成功的比例不到50%。传统的基于电生理信号的癫痫发作检测方法资源消耗大、费力,且忽略了多灶性脑交互作用。代数拓扑方法,特别是持久同调,能提供复杂脑交互模式的稳健表示。利用持久同调以及谷歌Gemini Pro Vision 1.0大语言模型(LLM),我们提出了一种新颖的提示模板,用于对从难治性癫痫患者的颅内脑电图(iEEG)记录中计算出的拓扑结构进行分类。本研究标志着首次将持久图作为大语言模型的输入来分析脑交互动力学。我们的结果表明,仅用持久图提示大语言模型不足以进行准确的癫痫发作检测。尽管如此,与使用机器学习算法进行脑电图分类的传统方法不同,我们的方法不需要大量具有代表性的训练数据或脆弱的超参数调整,这凸显了未来更具扩展性分析的前景。