Suppr超能文献

针对未破裂颅内动脉瘤的力学特性研究:变形装置与动脉瘤壁相互作用的数值模拟。

Towards the mechanical characterisation of unruptured intracranial aneurysms: Numerical modelling of interactions between a deformation device and the aneurysm wall.

机构信息

Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513, Université de Lyon, École Centrale de Lyon, France.

Graduate School of Engineering, Tohuku University, 980-8579, Sendai Miyagi, Japan; Institute of Fluid Science, Tohuku University, 980-8577, Sendai Miyagi, Japan.

出版信息

J Mech Behav Biomed Mater. 2024 May;153:106469. doi: 10.1016/j.jmbbm.2024.106469. Epub 2024 Feb 21.

Abstract

Intracranial aneurysm is a critical pathology related to the arterial wall deterioration. This work is an essential aspect of a large scale project aimed at providing clinicians with a non-invasive patient-specific decision support tool regarding the rupture risk assessment. A machine learning algorithm links the aneurysm shape observed and a database of UIA clinical images associated with in vivo wall mechanical properties and rupture characterisation. The database constitution is derived from a device prototype coupled with medical imaging. It provides the mechanical characterisation of the aneurysm from the wall deformation obtained by inverse analysis based on the variation of luminal volume. Before performing in vivo tests of the device on small animals, a numerical model was built to quantify the device's impact on the aneurysm wall under natural blood flow conditions. As the clinician will never be able to precisely situate the device, several locations were considered. In preparation for the inverse analysis procedure, artery material laws of increasing complexity were studied (linear elastic, hyper elastic Fung-like). Considering all the device locations and material laws, the device induced relative displacements to the Systole peak (worst case scenario with the highest mechanical stimulus linked to the blood flow) ranging from 375 μm to 1.28 mm. The variation of luminal volume associated with the displacements was between 0.95 % and 4.3 % compared to the initial Systole volume of the aneurysm. Significant increase of the relative displacements and volume variations were found with the study of different cardiac cycle moments between the blood flow alone and the device application. For forthcoming animal model studies, Spectral Photon CT Counting, with a minimum spatial resolution of 250 μm, was selected as the clinical imaging technique. Based on this preliminary study, the displacements and associated volume variations (baseline for inverse analyse), should be observable and exploitable.

摘要

颅内动脉瘤是一种与动脉壁恶化有关的关键病理学。这项工作是一个大型项目的重要组成部分,旨在为临床医生提供一种非侵入性的个体化决策支持工具,用于评估破裂风险。机器学习算法将观察到的动脉瘤形状与数据库中的 UIA 临床图像相关联,这些图像与体内壁力学特性和破裂特征有关。该数据库的构成源于与医学成像相结合的设备原型。它通过基于管腔体积变化的反分析来提供从壁变形获得的动脉瘤的力学特征。在对小动物进行设备体内测试之前,建立了一个数值模型来量化设备在自然血流条件下对动脉瘤壁的影响。由于临床医生永远无法准确地定位设备,因此考虑了几个位置。在准备反分析过程中,研究了动脉材料规律的复杂性(线弹性、超弹性 Fung 样)。考虑到所有设备位置和材料规律,设备在收缩期峰值(与血流相关的最高机械刺激的最坏情况)引起的相对位移范围为 375 μm 至 1.28 mm。与动脉瘤的初始收缩期体积相比,与位移相关的管腔体积变化范围为 0.95%至 4.3%。在单独血流和设备应用之间的不同心动周期时刻的研究中,发现相对位移和体积变化的显著增加。对于即将进行的动物模型研究,选择具有最小空间分辨率为 250 μm 的光谱光子 CT 计数作为临床成像技术。基于这项初步研究,位移和相关体积变化(反分析的基线)应该是可观察和可利用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验