Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
Shandong Engineering Research Center of Big Data Applied Technology, Faculty of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
PLoS Comput Biol. 2024 Aug 22;20(8):e1012399. doi: 10.1371/journal.pcbi.1012399. eCollection 2024 Aug.
Circular RNAs (circRNAs) play vital roles in transcription and translation. Identification of circRNA-RBP (RNA-binding protein) interaction sites has become a fundamental step in molecular and cell biology. Deep learning (DL)-based methods have been proposed to predict circRNA-RBP interaction sites and achieved impressive identification performance. However, those methods cannot effectively capture long-distance dependencies, and cannot effectively utilize the interaction information of multiple features. To overcome those limitations, we propose a DL-based model iCRBP-LKHA using deep hybrid networks for identifying circRNA-RBP interaction sites. iCRBP-LKHA adopts five encoding schemes. Meanwhile, the neural network architecture, which consists of large kernel convolutional neural network (LKCNN), convolutional block attention module with one-dimensional convolution (CBAM-1D) and bidirectional gating recurrent unit (BiGRU), can explore local information, global context information and multiple features interaction information automatically. To verify the effectiveness of iCRBP-LKHA, we compared its performance with shallow learning algorithms on 37 circRNAs datasets and 37 circRNAs stringent datasets. And we compared its performance with state-of-the-art DL-based methods on 37 circRNAs datasets, 37 circRNAs stringent datasets and 31 linear RNAs datasets. The experimental results not only show that iCRBP-LKHA outperforms other competing methods, but also demonstrate the potential of this model in identifying other RNA-RBP interaction sites.
环形 RNA(circRNA)在转录和翻译中发挥着重要作用。鉴定 circRNA-RBP(RNA 结合蛋白)相互作用位点已成为分子和细胞生物学的基本步骤。已经提出了基于深度学习(DL)的方法来预测 circRNA-RBP 相互作用位点,并取得了令人印象深刻的识别性能。然而,这些方法无法有效地捕获长距离依赖性,也无法有效地利用多个特征的相互作用信息。为了克服这些限制,我们提出了一种基于 DL 的模型 iCRBP-LKHA,用于识别 circRNA-RBP 相互作用位点。iCRBP-LKHA 采用了五种编码方案。同时,神经网络架构由大核卷积神经网络(LKCNN)、一维卷积的卷积块注意模块(CBAM-1D)和双向门控循环单元(BiGRU)组成,可以自动探索局部信息、全局上下文信息和多个特征的相互作用信息。为了验证 iCRBP-LKHA 的有效性,我们在 37 个 circRNA 数据集和 37 个 circRNA 严格数据集上与浅层学习算法进行了性能比较。我们还在 37 个 circRNA 数据集、37 个 circRNA 严格数据集和 31 个线性 RNA 数据集上与最先进的基于 DL 的方法进行了性能比较。实验结果不仅表明 iCRBP-LKHA 优于其他竞争方法,还证明了该模型在识别其他 RNA-RBP 相互作用位点方面的潜力。