Suppr超能文献

基于多窗口时频重分配的树皮频率谱系数心音分类算法研究

[Research on bark-frequency spectral coefficients heart sound classification algorithm based on multiple window time-frequency reassignment].

作者信息

Xia Jun, Sun Jing, Yang Hongbo, Pan Jiahua, Guo Tao, Wang Weilian

机构信息

School of Information Science and Engineering, Yunnan University, Kunming 650504, P. R. China.

Kunming Medical University, Kunming 650000, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):51-59. doi: 10.7507/1001-5515.202212037.

Abstract

The multi-window time-frequency reassignment helps to improve the time-frequency resolution of bark-frequency spectral coefficient (BFSC) analysis of heart sounds. For this purpose, a new heart sound classification algorithm combining feature extraction based on multi-window time-frequency reassignment BFSC with deep learning was proposed in this paper. Firstly, the randomly intercepted heart sound segments are preprocessed with amplitude normalization, the heart sounds were framed and time-frequency rearrangement based on short-time Fourier transforms were computed using multiple orthogonal windows. A smooth spectrum estimate is calculated by arithmetic averaging each of the obtained independent spectra. Finally, the BFSC of reassignment spectrum is extracted as a feature by the Bark filter bank. In this paper, convolutional network and recurrent neural network are used as classifiers for model comparison and performance evaluation of the extracted features. Eventually, the multi-window time-frequency rearrangement improved BFSC method extracts more discriminative features, with a binary classification accuracy of 0.936, a sensitivity of 0.946, and a specificity of 0.922. These results present that the algorithm proposed in this paper does not need to segment the heart sounds and randomly intercepts the heart sound segments, which greatly simplifies the computational process and is expected to be used for screening of congenital heart disease.

摘要

多窗口时频重分配有助于提高心音的 Bark 频域谱系数(BFSC)分析的时频分辨率。为此,本文提出了一种将基于多窗口时频重分配 BFSC 的特征提取与深度学习相结合的新型心音分类算法。首先,对随机截取的心音片段进行幅度归一化预处理,对心音进行加窗,并使用多个正交窗口基于短时傅里叶变换计算时频重排。通过对每个获得的独立频谱进行算术平均来计算平滑频谱估计。最后,通过 Bark 滤波器组提取重分配频谱的 BFSC 作为特征。本文使用卷积网络和循环神经网络作为分类器,对提取的特征进行模型比较和性能评估。最终,多窗口时频重排改进的 BFSC 方法提取了更具判别力的特征,二元分类准确率为 0.936,灵敏度为 0.946,特异性为 0.922。这些结果表明,本文提出的算法无需对心音进行分割,而是随机截取心音片段,这大大简化了计算过程,有望用于先天性心脏病的筛查。

相似文献

3
[Heart sound classification based on sub-band envelope and convolution neural network].基于子带包络和卷积神经网络的心音分类
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):969-978. doi: 10.7507/1001-5515.202012024.
8
Heart Sound Classification based on Residual Shrinkage Networks.基于残差收缩网络的心音分类。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4469-4472. doi: 10.1109/EMBC48229.2022.9871640.

本文引用的文献

3
An open access database for the evaluation of heart sound algorithms.一个用于评估心音算法的开放获取数据库。
Physiol Meas. 2016 Dec;37(12):2181-2213. doi: 10.1088/0967-3334/37/12/2181. Epub 2016 Nov 21.
4
Wavelet packet entropy for heart murmurs classification.用于心脏杂音分类的小波包熵
Adv Bioinformatics. 2012;2012:327269. doi: 10.1155/2012/327269. Epub 2012 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验