Suppr超能文献

基于门控循环单元的心音分析用于心力衰竭筛查。

Gated recurrent unit-based heart sound analysis for heart failure screening.

机构信息

Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

出版信息

Biomed Eng Online. 2020 Jan 13;19(1):3. doi: 10.1186/s12938-020-0747-x.

Abstract

BACKGROUND

Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically.

METHODS

We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction.

RESULTS

To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models.

CONCLUSION

The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.

摘要

背景

心力衰竭(HF)是一种由心脏结构和功能异常引起的心血管疾病。HF 的早期筛查对及时治疗具有重要意义。心音(HS)传递与 HF 相关的相关信息;因此,本研究基于 HS 信号分析。目的是开发一种有效的工具,自动识别正常、射血分数保留性心力衰竭和射血分数降低性心力衰竭的受试者。

方法

我们在这项研究中提出了一种基于门控循环单元(GRU)模型的新型 HF 筛查框架。采用基于逻辑回归的隐半马尔可夫模型对 HS 帧进行分割。归一化帧作为输入,提出的模型可以自动学习深层特征,无需去噪和手工特征提取即可完成 HF 筛查。

结果

为了评估所提出模型的性能,我们使用了三种方法进行比较。结果表明,GRU 模型具有令人满意的性能,平均准确率为 98.82%,优于其他比较模型。

结论

所提出的 GRU 模型可以直接从 HS 中学习特征,这意味着它可以独立于专家知识。此外,良好的性能证明了 HS 分析对 HF 早期筛查的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f5c/6958660/6e2cdab1e779/12938_2020_747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验