Suppr超能文献

基于LightGBM模型的肺腺癌患者免疫相关基因筛选及生存预测

[Screening of immune related gene and survival prediction of lung adenocarcinoma patients based on LightGBM model].

作者信息

Meng Xiangfu, Tian Youfa, Zhang Xiaoyan

机构信息

School of Electronics and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125000, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):70-79. doi: 10.7507/1001-5515.202305038.

Abstract

Lung cancer is one of the malignant tumors with the greatest threat to human health, and studies have shown that some genes play an important regulatory role in the occurrence and development of lung cancer. In this paper, a LightGBM ensemble learning method is proposed to construct a prognostic model based on immune relate gene (IRG) profile data and clinical data to predict the prognostic survival rate of lung adenocarcinoma patients. First, this method used the Limma package for differential gene expression, used CoxPH regression analysis to screen the IRG to prognosis, and then used XGBoost algorithm to score the importance of the IRG features. Finally, the LASSO regression analysis was used to select IRG that could be used to construct a prognostic model, and a total of 17 IRG features were obtained that could be used to construct model. LightGBM was trained according to the IRG screened. The K-means algorithm was used to divide the patients into three groups, and the area under curve (AUC) of receiver operating characteristic (ROC) of the model output showed that the accuracy of the model in predicting the survival rates of the three groups of patients was 96%, 98% and 96%, respectively. The experimental results show that the model proposed in this paper can divide patients with lung adenocarcinoma into three groups [5-year survival rate higher than 65% (group 1), lower than 65% but higher than 30% (group 2) and lower than 30% (group 3)] and can accurately predict the 5-year survival rate of lung adenocarcinoma patients.

摘要

肺癌是对人类健康威胁最大的恶性肿瘤之一,研究表明一些基因在肺癌的发生发展中起重要调节作用。本文提出一种LightGBM集成学习方法,基于免疫相关基因(IRG)谱数据和临床数据构建预后模型,以预测肺腺癌患者的预后生存率。首先,该方法使用Limma软件包进行差异基因表达分析,采用CoxPH回归分析筛选与预后相关的IRG,然后使用XGBoost算法对IRG特征的重要性进行评分。最后,使用LASSO回归分析选择可用于构建预后模型的IRG,共获得17个可用于构建模型的IRG特征。根据筛选出的IRG对LightGBM进行训练。使用K-means算法将患者分为三组,模型输出的受试者工作特征曲线(ROC)下面积(AUC)表明,该模型预测三组患者生存率的准确率分别为96%、98%和96%。实验结果表明,本文提出的模型可将肺腺癌患者分为三组[5年生存率高于65%(第1组)、低于65%但高于30%(第2组)和低于30%(第3组)],并能准确预测肺腺癌患者的5年生存率。

相似文献

4
[Bioinformatic analysis of prognostic metabolism-related genes in lung adenocarcinoma].
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2023 Jan;39(1):41-48.
9
Establishment and validation of an immune-associated signature in lung adenocarcinoma.肺腺癌中免疫相关特征的建立与验证
Int Immunopharmacol. 2020 Nov;88:106867. doi: 10.1016/j.intimp.2020.106867. Epub 2020 Aug 13.

本文引用的文献

5
Lung cancer.肺癌。
Lancet. 2021 Aug 7;398(10299):535-554. doi: 10.1016/S0140-6736(21)00312-3. Epub 2021 Jul 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验