文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

三种 RNA 测序差异表达分析方法:limma、EdgeR、DESeq2。

Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2.

机构信息

Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University.

Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine.

出版信息

J Vis Exp. 2021 Sep 18(175). doi: 10.3791/62528.


DOI:10.3791/62528
PMID:34605806
Abstract

RNA sequencing (RNA-seq) is one of the most widely used technologies in transcriptomics as it can reveal the relationship between the genetic alteration and complex biological processes and has great value in diagnostics, prognostics, and therapeutics of tumors. Differential analysis of RNA-seq data is crucial to identify aberrant transcriptions, and limma, EdgeR and DESeq2 are efficient tools for differential analysis. However, RNA-seq differential analysis requires certain skills with R language and the ability to choose an appropriate method, which is lacking in the curriculum of medical education. Herein, we provide the detailed protocol to identify differentially expressed genes (DEGs) between cholangiocarcinoma (CHOL) and normal tissues through limma, DESeq2 and EdgeR, respectively, and the results are shown in volcano plots and Venn diagrams. The three protocols of limma, DESeq2 and EdgeR are similar but have different steps among the processes of the analysis. For example, a linear model is used for statistics in limma, while the negative binomial distribution is used in edgeR and DESeq2. Additionally, the normalized RNA-seq count data is necessary for EdgeR and limma but is not necessary for DESeq2. Here, we provide a detailed protocol for three differential analysis methods: limma, EdgeR and DESeq2. The results of the three methods are partly overlapping. All three methods have their own advantages, and the choice of method only depends on the data.

摘要

RNA 测序(RNA-seq)是转录组学中应用最广泛的技术之一,因为它可以揭示遗传改变与复杂生物过程之间的关系,在肿瘤的诊断、预后和治疗方面具有重要价值。RNA-seq 数据的差异分析对于识别异常转录至关重要,limma、EdgeR 和 DESeq2 是差异分析的有效工具。然而,RNA-seq 差异分析需要具备一定的 R 语言技能,并能够选择合适的方法,而这在医学教育课程中是缺乏的。在这里,我们分别通过 limma、DESeq2 和 EdgeR 提供了鉴定胆管癌(CHOL)和正常组织之间差异表达基因(DEGs)的详细方案,并通过火山图和 Venn 图展示了结果。limma、DESeq2 和 EdgeR 的三个方案虽然相似,但在分析过程的各个步骤中却有所不同。例如,limma 中使用线性模型进行统计,而 edgeR 和 DESeq2 中则使用负二项式分布。此外,edgeR 和 limma 需要归一化的 RNA-seq 计数数据,但 DESeq2 不需要。在这里,我们提供了三种差异分析方法(limma、EdgeR 和 DESeq2)的详细方案。这三种方法的结果部分重叠。所有三种方法都有各自的优势,方法的选择仅取决于数据。

相似文献

[1]
Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2.

J Vis Exp. 2021-9-18

[2]
Robust identification of differentially expressed genes from RNA-seq data.

Genomics. 2020-3

[3]
SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data.

PLoS One. 2016-6-9

[4]
Bacterial Differential Expression Analysis Methods.

Methods Mol Biol. 2020

[5]
Differential Expression Analysis in Single-Cell Transcriptomics.

Methods Mol Biol. 2019

[6]
A transcriptome software comparison for the analyses of treatments expected to give subtle gene expression responses.

BMC Genomics. 2022-6-20

[7]
A comparison of transcriptome analysis methods with reference genome.

BMC Genomics. 2022-3-25

[8]
In Papyro Comparison of TMM (edgeR), RLE (DESeq2), and MRN Normalization Methods for a Simple Two-Conditions-Without-Replicates RNA-Seq Experimental Design.

Front Genet. 2016-9-16

[9]
bestDEG: a web-based application automatically combines various tools to precisely predict differentially expressed genes (DEGs) from RNA-Seq data.

PeerJ. 2022

[10]
Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.

PLoS One. 2020-4-30

引用本文的文献

[1]
Construction and immunohistochemical validation of a necroptosis-related prognostic signature in bladder cancer and its association with tumor immune infiltration.

Front Genet. 2025-8-14

[2]
To explore the prognostic efficacy and mechanism of ABCC5 clinical scoring model in hepatocellular carcinoma.

Front Oncol. 2025-8-11

[3]
Tumor microenvironment signatures enhances lung adenocarcinoma prognosis prediction: Implication of intratumoral microbiota.

Microb Cell. 2025-8-11

[4]
Biomaterial-mediated Cell Atlas: an insight from single-cell and spatial transcriptomics.

Bioact Mater. 2025-8-8

[5]
Unveiling ammonia-induced cell death: a new frontier in clear cell renal cell carcinoma prognosis.

Front Immunol. 2025-7-31

[6]
Genomic selection for growth and wood properties in multi-generation hybrid populations of .

Hortic Res. 2025-6-25

[7]
Characterization of bacteria colonizing the mucosal layer of the gastrointestinal tract of Atlantic salmon farmed in a warm water region.

Front Microbiol. 2025-7-23

[8]
Genome-Wide Identification, Evolutionary Expansion, and Expression Analyses of Aux/IAA Gene Family in During Seed Kernel Development.

Biology (Basel). 2025-7-3

[9]
Identification and validation of biomarkers associated with glycolysis in polycystic ovarian syndrome.

Sci Rep. 2025-7-26

[10]
Bioinformatics analysis of glycolysis-related differentially expressed genes (GRDEGs) and their significance in ischemic stroke.

Medicine (Baltimore). 2025-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索