Suppr超能文献

卷积神经网络在心房颤动机制驱动因素检测中的应用。

Convolutional Neural Networks for Mechanistic Driver Detection in Atrial Fibrillation.

机构信息

Department of Cardiology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain.

Center for Biomedical Research in Cardiovascular Disease Network (CIBERCV), 28029 Madrid, Spain.

出版信息

Int J Mol Sci. 2022 Apr 11;23(8):4216. doi: 10.3390/ijms23084216.

Abstract

The maintaining and initiating mechanisms of atrial fibrillation (AF) remain controversial. Deep learning is emerging as a powerful tool to better understand AF and improve its treatment, which remains suboptimal. This paper aims to provide a solution to automatically identify rotational activity drivers in endocardial electrograms (EGMs) with convolutional recurrent neural networks (CRNNs). The CRNN model was compared with two other state-of-the-art methods (SimpleCNN and attention-based time-incremental convolutional neural network (ATI-CNN)) for different input signals (unipolar EGMs, bipolar EGMs, and unipolar local activation times), sampling frequencies, and signal lengths. The proposed CRNN obtained a detection score based on the Matthews correlation coefficient of 0.680, an ATI-CNN score of 0.401, and a SimpleCNN score of 0.118, with bipolar EGMs as input signals exhibiting better overall performance. In terms of signal length and sampling frequency, no significant differences were found. The proposed architecture opens the way for new ablation strategies and driver detection methods to better understand the AF problem and its treatment.

摘要

心房颤动(AF)的维持和触发机制仍存在争议。深度学习正在成为更好地理解 AF 并改善其治疗效果的有力工具,而目前的治疗效果仍不尽如人意。本文旨在提供一种解决方案,使用卷积递归神经网络(CRNN)自动识别心内膜电图(EGM)中的旋转活动驱动因素。将 CRNN 模型与另外两种最先进的方法(SimpleCNN 和基于注意力的时间递增卷积神经网络(ATI-CNN))进行了比较,比较的依据是不同的输入信号(单极 EGM、双极 EGM 和单极局部激活时间)、采样频率和信号长度。所提出的 CRNN 基于 Matthews 相关系数的检测得分达到了 0.680,ATI-CNN 得分 0.401,SimpleCNN 得分 0.118,以双极 EGM 作为输入信号的表现出了更好的整体性能。在信号长度和采样频率方面,没有发现显著差异。所提出的架构为新的消融策略和驱动因素检测方法开辟了道路,以更好地理解 AF 问题及其治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fed6/9032062/320f9479e3be/ijms-23-04216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验