Altaf Mohammad, Ilyas Talat, Shahid Mohammad, Shafi Zaryab, Tyagi Anshika, Ali Sajad
Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia.
Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh 226026, India.
ACS Omega. 2024 Feb 8;9(7):8557-8573. doi: 10.1021/acsomega.3c10470. eCollection 2024 Feb 20.
Heavy metals (HMs) pose a serious threat to agricultural productivity. Therefore, there is a need to find sustainable approaches to combat HM stressors in agriculture. In this study, we isolated sp. TF-13 from metal-polluted rhizospheric soil, which has the ability to resist 1600 and 1200 μg mL cadmium (Cd) and lead (Pb), respectively. Owing to its remarkable metal tolerance, this fungal strain was applied for bioremediation of HMs in (L.). Strain TF-13 produced siderophore, salicylic acid (SA; 43.4 μg mL) and 2,3-DHBA (21.0 μg mL), indole-3-acetic acid, ammonia, and ACC deaminase under HM stressed conditions. Increasing concentrations of tested HM ions caused severe reduction in overall growth of plants; however, sp. TF-13 inoculation significantly ( ≤ 0.05) increased the growth and physiological traits of HM-treated . Interestingly, sp. TF-13 improved germination rate (10%), root length (26%), root biomass (32%), and vigor index (12%) of grown under 25 μg Cd kg soil. Additionally, inoculation showed a significant ( ≤ 0.05) increase in total chlorophyll, chl a, chl b, carotenoid content, root nitrogen (N), and root phosphorus (P) of 100 μg Cd kg soil-treated plants over uninoculated treatment. Furthermore, enzymatic and nonenzymatic antioxidant activities of inoculated in metal-treated plants were improved. For instance, strain TF-13 increased proline (37%), lipid peroxidation (56%), catalase (35%), peroxidase (42%), superoxide dismutase (27%), and glutathione reductase (39%) activities in 100 μg Pb kg soil-treated plants. The uptake of Pb and Cd in root/shoot tissues was decreased by 34/39 and 47/38% in fungal-inoculated and 25 μg kg soil-treated plants. Thus, this study demonstrates that stabilizing metal mobility in the rhizosphere through inoculation significantly reduced the detrimental effects of Cd and Pb toxicity in and also enhanced development under HM stress conditions.
重金属(HMs)对农业生产力构成严重威胁。因此,有必要寻找可持续的方法来应对农业中的重金属胁迫源。在本研究中,我们从金属污染的根际土壤中分离出了sp. TF-13,该菌株分别能够耐受1600和1200μg/mL的镉(Cd)和铅(Pb)。由于其显著的金属耐受性,该真菌菌株被用于对(L.)中的重金属进行生物修复。在重金属胁迫条件下,菌株TF-13产生了铁载体、水杨酸(SA;43.4μg/mL)和2,3-二羟基苯甲酸(21.0μg/mL)、吲哚-3-乙酸、氨和ACC脱氨酶。测试的重金属离子浓度增加导致植物总体生长严重下降;然而,接种sp. TF-13显著(≤0.05)提高了重金属处理后的植物的生长和生理特性。有趣的是,在25μg Cd/kg土壤中生长的植物,接种sp. TF-13后发芽率提高了10%,根长增加了26%,根生物量增加了32%,活力指数提高了12%。此外,接种显示,与未接种处理相比,在100μg Cd/kg土壤处理的植物中,总叶绿素、叶绿素a、叶绿素b、类胡萝卜素含量、根氮(N)和根磷(P)显著(≤0.05)增加。此外,接种在金属处理植物中的酶促和非酶促抗氧化活性得到了改善。例如,在100μg Pb/kg土壤处理的植物中,菌株TF-13使脯氨酸增加了37%,脂质过氧化增加了56%,过氧化氢酶增加了35%,过氧化物酶增加了42%,超氧化物歧化酶增加了27%,谷胱甘肽还原酶增加了39%。在接种真菌且25μg/kg土壤处理的植物中,根/茎组织中铅和镉的吸收分别降低了34/39和47/38%。因此,本研究表明,通过接种稳定根际中的金属迁移率可显著降低镉和铅毒性对植物的有害影响,并在重金属胁迫条件下促进植物生长。