Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
Mutat Res Genet Toxicol Environ Mutagen. 2023 Oct;891:503688. doi: 10.1016/j.mrgentox.2023.503688. Epub 2023 Aug 30.
Intensive use of chemical pesticides in agriculture poses environmental risks and may have negative impacts on agricultural productivity. The potential phytotoxicity of two chemical pesticides, chlorpyrifos (CPS) and fensulfothion (FSN), were evaluated using Cicer arietinum and Allium cepa as model crops. Different concentrations (0-100 μgmL) of both CPS and FSN decreased germination and biological attributes of C. arietinum. High pesticide doses significantly (p ≤ 0.05) caused membrane damage by producing thiobarbituric acid reactive substances (TBARS) and increasing proline (Pro) content. Pesticides elevated ROS levels and substantially increased the superoxide anions and HO concentrations, thus aggravating cell injury. Plants exposed to high pesticide dosages displayed significantly higher antioxidant levels to combat pesticide-induced oxidative stress. Ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) increased by 48%, 93%, 71%, 52% and 94%, respectively, in C. arietinum roots exposed to 100 µgFSNmL. Under CLSM, pesticide-exposed C. arietinum and 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine stained roots exhibited increased ROS production in a concentration-dependent manner. Additionally, enhanced Rhodamine 123 (Rhd 123) and Evan's blue fluorescence in roots, as well as changes in mitochondrial membrane potential (ΔΨm) and cellular apoptosis, were both associated with high pesticide dose. Allium cepa chromosomal aberration (CAs) assay showed a clear reduction in mitotic index (MI) and numerous chromosomal anomalies in root meristematic cells. Additionally, a-dose-dependent increase in DNA damage in root meristematic cells of A. cepa and conversion of the super-coiled form of DNA to open circular in pBR322 plasmid revealed the genotoxic potential of pesticides. The application of CPS and FSN suggests phytotoxic and cyto-genotoxic effects that emphasize the importance of careful monitoring of current pesticide level in soil before application and addition at optimal levels to soil-plant system. It is appropriate to prepare both target-specific and slow-release agrochemical formulations for crop protection with concurrent safeguarding of agroecosystems.
农业中大量使用化学农药会带来环境风险,并可能对农业生产力产生负面影响。本研究以鹰嘴豆和洋葱为模式作物,评估了两种化学农药毒死蜱(CPS)和芬硫磷(FSN)的潜在植物毒性。不同浓度(0-100μgmL)的 CPS 和 FSN 均降低了鹰嘴豆的发芽率和生物特性。高剂量农药显著(p≤0.05)通过产生硫代巴比妥酸反应物质(TBARS)和增加脯氨酸(Pro)含量造成膜损伤。农药会提高活性氧(ROS)水平,显著增加超氧阴离子和 HO 的浓度,从而加重细胞损伤。暴露于高剂量农药的植物会显著提高抗氧化水平,以对抗农药引起的氧化应激。在 CPS 处理的鹰嘴豆根中,抗坏血酸过氧化物酶(APX)、愈创木酚过氧化物酶(GPX)、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)分别增加了 48%、93%、71%、52%和 94%。在共聚焦显微镜下,用 2'7'-二氯二氢荧光素二乙酸酯(2'7'-DCF)和 3,3'-二氨基联苯胺染色后,发现暴露于农药的鹰嘴豆根中 ROS 产生呈浓度依赖性增加。此外,根中罗丹明 123(Rhd 123)和 Evan's 蓝荧光增强以及线粒体膜电位(ΔΨm)和细胞凋亡变化均与高剂量农药有关。洋葱根尖染色体畸变(CAs)试验显示,有丝分裂指数(MI)明显降低,根尖分生细胞出现许多染色体异常。此外,在洋葱根尖分生细胞中,农药处理后 DNA 损伤呈剂量依赖性增加,pBR322 质粒中超螺旋形式的 DNA 向开环形式的转化表明了农药的遗传毒性。CPS 和 FSN 的应用表明了其具有植物毒性和细胞遗传毒性,这强调了在应用和添加到土壤-植物系统之前,对土壤中当前农药水平进行仔细监测的重要性。为了保护农业生态系统,同时保护作物,应制备有针对性和缓慢释放的农用化学品制剂。