Suppr超能文献

多重成像数据处理中FAIR质量控制的观点

A perspective on FAIR quality control in multiplexed imaging data processing.

作者信息

Vierdag Wouter-Michiel A M, Saka Sinem K

机构信息

Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.

出版信息

Front Bioinform. 2024 Feb 9;4:1336257. doi: 10.3389/fbinf.2024.1336257. eCollection 2024.

Abstract

Multiplexed imaging approaches are getting increasingly adopted for imaging of large tissue areas, yielding big imaging datasets both in terms of the number of samples and the size of image data per sample. The processing and analysis of these datasets is complex owing to frequent technical artifacts and heterogeneous profiles from a high number of stained targets To streamline the analysis of multiplexed images, automated pipelines making use of state-of-the-art algorithms have been developed. In these pipelines, the output quality of one processing step is typically dependent on the output of the previous step and errors from each step, even when they appear minor, can propagate and confound the results. Thus, rigorous quality control (QC) at each of these different steps of the image processing pipeline is of paramount importance both for the proper analysis and interpretation of the analysis results and for ensuring the reusability of the data. Ideally, QC should become an integral and easily retrievable part of the imaging datasets and the analysis process. Yet, limitations of the currently available frameworks make integration of interactive QC difficult for large multiplexed imaging data. Given the increasing size and complexity of multiplexed imaging datasets, we present the different challenges for integrating QC in image analysis pipelines as well as suggest possible solutions that build on top of recent advances in bioimage analysis.

摘要

多重成像方法越来越多地被用于大组织区域的成像,无论是样本数量还是每个样本的图像数据大小,都产生了大量的成像数据集。由于频繁出现的技术伪影和大量染色靶点的异质性特征,这些数据集的处理和分析很复杂。为了简化多重图像的分析,已经开发了利用最先进算法的自动化流程。在这些流程中,一个处理步骤的输出质量通常取决于上一步骤的输出以及每个步骤的误差,即使这些误差看起来很小,也可能会传播并混淆结果。因此,在图像处理流程的每个不同步骤进行严格的质量控制(QC),对于正确分析和解释分析结果以及确保数据的可重用性至关重要。理想情况下,质量控制应该成为成像数据集和分析过程中不可或缺且易于检索的一部分。然而,当前可用框架的局限性使得对大型多重成像数据进行交互式质量控制的集成变得困难。鉴于多重成像数据集的规模和复杂性不断增加,我们提出了在图像分析流程中集成质量控制的不同挑战,并提出了基于生物图像分析最新进展的可能解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4c9/10885342/032ea69e76e0/fbinf-04-1336257-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验