Doctorado en Ciencias de La Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Macul, Chile.
Escuela de Ingeniería, Facultad de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile.
Arch Microbiol. 2024 Feb 26;206(3):123. doi: 10.1007/s00203-024-03835-6.
In this comprehensive study, we delved into the capabilities of five fungal strains: Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.
在这项全面的研究中,我们深入研究了五种真菌菌株的能力:黄曲霉、黑曲霉、产黄青霉、光滑青霉和红青霉(后者从重质原油 [HCO] 中分离得到),以代谢 HCO 作为碳源。采用精心设计的实验方法,在室温(25°C)下进行,我们系统地研究了各种培养基和培养时间。结果揭示了所有这些真菌对 HCO 的非凡适应能力,其中黄曲霉表现最为出色。值得注意的是,黄曲霉表现出强大的生长能力,在培养基表面上实现了惊人的 59.1%的扩张,同时具有独特的宏观特征,包括棉絮状外观和鲜艳的颜色。为了进一步研究其生物转化能力,我们在液体培养基中进行了实验,通过气相色谱法定量 CO 的产生,在第 30 天达到峰值,表明生物转化显著,CO 的产生增加了 38%。此外,我们使用 Du Noüy 环法监测表面张力的变化,发现水相张力从 72.3 降至 47 mN/m。这一有力证据证实,黄曲霉能够巧妙地代谢 HCO 来为其生长提供燃料,同时产生有价值的生物表面活性剂。这些发现突显了黄曲霉在应对 HCO 相关挑战方面具有巨大的生物技术潜力,为生物修复和原油生物升级提供了有前景的途径。