Suppr超能文献

基于纳米剂量学的硼中子俘获治疗相对和复合生物效应模型的初步研究。

Primary study of the relative and compound biological effectiveness model for boron neutron capture therapy based on nanodosimetry.

机构信息

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.

School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China.

出版信息

Med Phys. 2024 Apr;51(4):3076-3092. doi: 10.1002/mp.16998. Epub 2024 Feb 26.

Abstract

BACKGROUND

The current radiobiological model employed for boron neutron capture therapy (BNCT) treatment planning, which relies on microdosimetry, fails to provide an accurate representation the biological effects of BNCT. The precision in calculating the relative biological effectiveness (RBE) and compound biological effectiveness (CBE) plays a pivotal role in determining the therapeutic efficacy of BNCT. Therefore, this study focuses on how to improve the accuracy of the biological effects of BNCT.

PURPOSE

The purpose of this study is to propose new radiation biology models based on nanodosimetry to accurately assess RBE and CBE for BNCT.

METHODS

Nanodosimetry, rooted in ionization cluster size distributions (ICSD), introduces a novel approach to characterize radiation quality by effectively delineating RBE through the ion track structure at the nanoscale. In the context of prior research, this study presents a computational model for the nanoscale assessment of RBE and CBE. We establish a simplified model of DNA chromatin fiber using the Monte Carlo code TOPAS-nBio to evaluate the applicability of ICSD to BNCT and compute nanodosimetric parameters.

RESULTS

Our investigation reveals that both homogeneous and heterogeneous nanodosimetric parameters, as well as the corresponding biological model coefficients α and β, along with RBE values, exhibit variations in response to varying intracellular B concentrations. Notably, the nanodosimetric parameter effectively captures the fluctuations in model coefficients α and RBE.

CONCLUSION

Our model facilitates a nanoscale analysis of BNCT, enabling predictions of nanodosimetric quantities for secondary ions as well as RBE, CBE, and other essential biological metrics related to the distribution of boron. This contribution significantly enhances the precision of RBE calculations and holds substantial promise for future applications in treatment planning.

摘要

背景

当前用于硼中子俘获治疗(BNCT)治疗计划的放射生物学模型依赖于微剂量学,无法准确表示 BNCT 的生物学效应。计算相对生物效应(RBE)和复合生物效应(CBE)的精度在确定 BNCT 的治疗效果方面起着关键作用。因此,本研究专注于如何提高 BNCT 生物学效应的准确性。

目的

本研究旨在提出基于纳米剂量学的新放射生物学模型,以准确评估 BNCT 的 RBE 和 CBE。

方法

纳米剂量学源于离子簇大小分布(ICSD),通过在纳米尺度上有效地描绘离子轨迹结构来有效区分 RBE,为评估辐射质量提供了一种新方法。在先前研究的基础上,本研究提出了一种用于 BNCT 纳米尺度评估 RBE 和 CBE 的计算模型。我们使用蒙特卡罗代码 TOPAS-nBio 建立了 DNA 染色质纤维的简化模型,以评估 ICSD 在 BNCT 中的适用性并计算纳米剂量学参数。

结果

我们的研究表明,同质和异质纳米剂量学参数以及相应的生物学模型系数α和β以及 RBE 值均随细胞内 B 浓度的变化而变化。值得注意的是,纳米剂量学参数有效地捕捉到了模型系数α和 RBE 的波动。

结论

我们的模型促进了 BNCT 的纳米尺度分析,能够预测二次离子的纳米剂量学数量以及 RBE、CBE 和与硼分布相关的其他重要生物学指标。这一贡献显著提高了 RBE 计算的精度,并为未来治疗计划中的应用提供了巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验