Lin Jingyu, Jiang Junhao, Zhou Yukang, Fan Qianqian, Zhuang Qixin, Mi Puke, Yin Wei, Zuo Peiyuan
Key Laboratory of Advanced Polymer Materials of Shanghai, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Shanghai Aerospace Control Technology Institute, Shanghai 201109, P. R. China.
ACS Appl Mater Interfaces. 2024 Mar 6;16(9):11880-11889. doi: 10.1021/acsami.3c17735. Epub 2024 Feb 26.
Mixing fillers featured with wide band gaps in polymers can effectively meet the requirement of higher energy storage densities. However, the fundamental relationship between the crystal structures of fillers and the dielectric properties of the corresponding nanocomposites is still unclear. Accordingly, we introduced ultralow contents of the synthesized cubic Hafnium dioxide (c-HfO) or monoclinic Hafnium dioxide (m-HfO) as deep traps into poly(ether imide) (PEI) to explore their effects on dielectric properties and the charge-blocking mechanism. m-HfO/PEI showed better charge trapping due to the higher electron affinity and deeper trap energy. At room temperature, the 0.4 vol % m-HfO/PEI maintains an ultralow dielectric loss of 0.008 while obtaining a dielectric constant twice that of pure PEI at 1 kHz, simultaneously outperforming in terms of leakage current density, breakdown strength (452 kV mm), discharge energy density (, 5.03 J cm), charge-discharge efficiency (η, 92%), and dielectric thermal stability. At 125 °C, it exhibits a considerable of 2.48 J cm and a high η of 85% at 300 kV mm, surpassing the properties of pure PEI. This promising work opens up a new path for studying HfO-derived dielectrics with unique crystal structures.
在聚合物中混合具有宽带隙的填料能够有效满足更高储能密度的要求。然而,填料的晶体结构与相应纳米复合材料介电性能之间的基本关系仍不明确。因此,我们将合成的立方相二氧化铪(c-HfO)或单斜相二氧化铪(m-HfO)的超低含量作为深陷阱引入聚醚酰亚胺(PEI)中,以探究它们对介电性能和电荷阻挡机制的影响。由于更高的电子亲和力和更深的陷阱能量,m-HfO/PEI表现出更好的电荷俘获能力。在室温下,0.4体积%的m-HfO/PEI在1kHz时保持0.008的超低介电损耗,同时获得的介电常数是纯PEI的两倍,在漏电流密度、击穿强度(452 kV/mm)、放电能量密度(5.03 J/cm)、充放电效率(η,92%)和介电热稳定性方面均表现出色。在125°C时,它在300 kV/mm下表现出可观的2.48 J/cm的能量密度和85%的高η,超过了纯PEI的性能。这项有前景的工作为研究具有独特晶体结构的HfO基电介质开辟了一条新途径。