Feng Mengjia, Feng Yu, Zhang Changhai, Zhang Tiandong, Chen Qingguo, Chi Qingguo
Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China.
Mater Horiz. 2022 Nov 28;9(12):3002-3012. doi: 10.1039/d2mh00912a.
Improving the tolerance of flexible polymers to extreme temperatures and electrical fields is critical to the development of advanced electrical and electronic systems. Suppressing carrier movement at high temperatures is one of the key methods to improve the high-temperature charging and discharging efficiency. In this work, a molecular semiconductor (ITIC) with high electron affinity energy is blended into the promising polymer polyetherimide (PEI). This molecular semiconductor will introduce traps in the dielectric that can trap carriers, thus achieving the effect of inhibiting carrier movement. Changing the concentration and position of the molecular semiconductor by electrospinning technology also means changing the density of the trap and the position of the trap layer. The effects of trap density and trap layer location on the high-temperature breakdown strength and energy storage properties of composite dielectrics are studied successively, and the structure of a composite with optimal high temperature energy storage properties is obtained. That is, the dielectric S-15-28 has an energy storage density () of 6.37 J cm at a temperature of 150 °C with a charge-discharge efficiency () of 90%; it also has a of 4.3 J cm at a temperature of 180 °C with the of 90%. A mechanism based on Mott and Gurney's law is proposed to explain the effect of trap parameters on leakage current. This work provides a new structural design idea to regulate the dielectric properties of all-organic dielectrics through trap distribution parameter optimization.
提高柔性聚合物对极端温度和电场的耐受性对于先进电气和电子系统的发展至关重要。抑制高温下的载流子移动是提高高温充放电效率的关键方法之一。在这项工作中,一种具有高电子亲和能的分子半导体(ITIC)被混入有前景的聚合物聚醚酰亚胺(PEI)中。这种分子半导体将在电介质中引入陷阱,这些陷阱可以捕获载流子,从而实现抑制载流子移动的效果。通过静电纺丝技术改变分子半导体的浓度和位置也意味着改变陷阱的密度和陷阱层的位置。相继研究了陷阱密度和陷阱层位置对复合电介质高温击穿强度和储能性能的影响,并获得了具有最佳高温储能性能的复合材料结构。也就是说,电介质S - 15 - 28在150℃温度下的储能密度()为6.37 J/cm³,充放电效率()为90%;在180℃温度下其储能密度为4.3 J/cm³,充放电效率为90%。提出了一种基于莫特和格尼定律的机制来解释陷阱参数对漏电流的影响。这项工作提供了一种新的结构设计思路,通过陷阱分布参数优化来调节全有机电介质的介电性能。