文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生成式人工智能的以患者为中心的放射科报告:为放射科报告增添价值。

Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting.

机构信息

Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.

Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea.

出版信息

Sci Rep. 2024 Jun 8;14(1):13218. doi: 10.1038/s41598-024-63824-z.


DOI:10.1038/s41598-024-63824-z
PMID:38851825
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11162416/
Abstract

The purposes were to assess the efficacy of AI-generated radiology reports in terms of report summary, patient-friendliness, and recommendations and to evaluate the consistent performance of report quality and accuracy, contributing to the advancement of radiology workflow. Total 685 spine MRI reports were retrieved from our hospital database. AI-generated radiology reports were generated in three formats: (1) summary reports, (2) patient-friendly reports, and (3) recommendations. The occurrence of artificial hallucinations was evaluated in the AI-generated reports. Two radiologists conducted qualitative and quantitative assessments considering the original report as a standard reference. Two non-physician raters assessed their understanding of the content of original and patient-friendly reports using a 5-point Likert scale. The scoring of the AI-generated radiology reports were overall high average scores across all three formats. The average comprehension score for the original report was 2.71 ± 0.73, while the score for the patient-friendly reports significantly increased to 4.69 ± 0.48 (p < 0.001). There were 1.12% artificial hallucinations and 7.40% potentially harmful translations. In conclusion, the potential benefits of using generative AI assistants to generate these reports include improved report quality, greater efficiency in radiology workflow for producing summaries, patient-centered reports, and recommendations, and a move toward patient-centered radiology.

摘要

目的是评估人工智能生成的放射学报告在报告摘要、患者友好性和建议方面的疗效,并评估报告质量和准确性的一致性能,为放射学工作流程的推进做出贡献。从我们医院的数据库中检索了 685 份脊柱 MRI 报告。人工智能生成的放射学报告有三种格式:(1)摘要报告,(2)患者友好型报告,(3)建议。评估人工智能生成的报告中是否存在人工幻觉。两名放射科医生进行了定性和定量评估,以原始报告为标准参考。两名非医生评估员使用 5 分李克特量表评估他们对原始报告和患者友好型报告内容的理解程度。三种格式的 AI 生成放射学报告的评分均为平均高分。原始报告的平均理解得分为 2.71±0.73,而患者友好型报告的得分显著提高至 4.69±0.48(p<0.001)。有 1.12%的人工幻觉和 7.40%的潜在有害翻译。总之,使用生成式人工智能助手生成这些报告的潜在好处包括提高报告质量、提高放射科工作流程生成摘要、以患者为中心的报告和建议的效率,并朝着以患者为中心的放射学方向发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/d61ab6d2ac3e/41598_2024_63824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/3f0297304d0e/41598_2024_63824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/3098cd668d0e/41598_2024_63824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/d61ab6d2ac3e/41598_2024_63824_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/3f0297304d0e/41598_2024_63824_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/3098cd668d0e/41598_2024_63824_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16b7/11162416/d61ab6d2ac3e/41598_2024_63824_Fig3_HTML.jpg

相似文献

[1]
Patient-centered radiology reports with generative artificial intelligence: adding value to radiology reporting.

Sci Rep. 2024-6-8

[2]
From jargon to clarity: Improving the readability of foot and ankle radiology reports with an artificial intelligence large language model.

Foot Ankle Surg. 2024-6

[3]
From technical to understandable: Artificial Intelligence Large Language Models improve the readability of knee radiology reports.

Knee Surg Sports Traumatol Arthrosc. 2024-5

[4]
Evaluating the performance of Generative Pre-trained Transformer-4 (GPT-4) in standardizing radiology reports.

Eur Radiol. 2024-6

[5]
Decoding Radiology Reports: Artificial Intelligence-Large Language Models Can Improve the Readability of Hand and Wrist Orthopedic Radiology Reports.

Hand (N Y). 2024-8-13

[6]
Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department.

JAMA Netw Open. 2023-10-2

[7]
[Applications of artificial intelligence in radiology].

Radiologie (Heidelb). 2024-10

[8]
Artificial Intelligence to Improve Patient Understanding of Radiology Reports.

Yale J Biol Med. 2023-9

[9]
Translating musculoskeletal radiology reports into patient-friendly summaries using ChatGPT-4.

Skeletal Radiol. 2024-8

[10]
Assessing Laterality Errors in Radiology: Comparing Generative Artificial Intelligence and Natural Language Processing.

J Am Coll Radiol. 2024-10

引用本文的文献

[1]
Assessing the ability of large language models to simplify lumbar spine imaging reports into patient-facing text: a pilot study of GPT-4.

Skeletal Radiol. 2025-9-9

[2]
Do you Really Want to Know-Patient and Physician Attitudes of Physicians and English-Proficient Asian Patients toward Direct Release of Radiology Reports in Singapore.

J Imaging Inform Med. 2025-9-2

[3]
Evaluating the Quality and Understandability of Radiology Report Summaries Generated by ChatGPT: Survey Study.

JMIR Form Res. 2025-8-27

[4]
Advancements in Radiology Report Generation: A Comprehensive Analysis.

Bioengineering (Basel). 2025-6-25

[5]
Patient-centered reporting: Should this become the new standard?

J Nucl Cardiol. 2025-7-5

[6]
Improving radiology reporting accuracy: use of GPT-4 to reduce errors in reports.

Abdom Radiol (NY). 2025-6-27

[7]
Comparison of Multiple State-of-the-Art Large Language Models for Patient Education Prior to CT and MRI Examinations.

J Pers Med. 2025-6-5

[8]
Advancing Musculoskeletal Care Using AI and Digital Health Applications: A Review of Commercial Solutions.

HSS J. 2025-5-30

[9]
A visualization system for intelligent diagnosis and statistical analysis of oral diseases based on panoramic radiography.

Sci Rep. 2025-5-25

[10]
Enhancing Radiologist Productivity with Artificial Intelligence in Magnetic Resonance Imaging (MRI): A Narrative Review.

Diagnostics (Basel). 2025-4-30

本文引用的文献

[1]
Large Language Models for Enhancing Radiology Report Impressions: Improve Readability While Decreasing Burnout.

Radiology. 2024-3

[2]
Quantitative Evaluation of Large Language Models to Streamline Radiology Report Impressions: A Multimodal Retrospective Analysis.

Radiology. 2024-3

[3]
Improving the use of LLMs in radiology through prompt engineering: from precision prompts to zero-shot learning.

Rofo. 2024-11

[4]
Large Language Models: A Guide for Radiologists.

Korean J Radiol. 2024-2

[5]
Chatbots and Large Language Models in Radiology: A Practical Primer for Clinical and Research Applications.

Radiology. 2024-1

[6]
Accuracy of ChatGPT, Google Bard, and Microsoft Bing for Simplifying Radiology Reports.

Radiology. 2023-11

[7]
Simplifying radiologic reports with natural language processing: a novel approach using ChatGPT in enhancing patient understanding of MRI results.

Arch Orthop Trauma Surg. 2024-2

[8]
ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.

Eur Radiol. 2024-5

[9]
Evaluating Diagnostic Performance of ChatGPT in Radiology: Delving into Methods.

Radiology. 2023-9

[10]
Performance of ChatGPT, human radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports.

Sci Rep. 2023-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索