Hu Zehua, Krisnanda Tanjung, Fieramosca Antonio, Zhao Jiaxin, Sun Qianlu, Chen Yuzhong, Liu Haiyun, Luo Yuan, Su Rui, Wang Junyong, Watanabe Kenji, Taniguchi Takashi, Eda Goki, Wang Xiao Renshaw, Ghosh Sanjib, Dini Kevin, Sanvitto Daniele, Liew Timothy C H, Xiong Qihua
National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore.
Nat Commun. 2024 Feb 26;15(1):1747. doi: 10.1038/s41467-024-45554-y.
Energy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS/hBN/WS heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode. This configuration demonstrates an unconventional energy transfer via polariton relaxation, brightening MoS with a record-high enhancement factor of ~440, i.e., two-order-of-magnitude higher than the data reported to date. The polariton relaxation features a short characteristic time of ~1.3 ps, resulting from the significantly enhanced intra- and inter-branch exciton-exciton scattering. The polariton relaxation dynamics is associated with Rabi energies in a phase diagram by combining experimental and theoretical results. This study opens a new direction of microcavity 2D semiconductor heterojunctions for high-brightness polaritonic light sources and ultrafast polariton carrier dynamics.
能量转移是一种普遍存在的现象,它将能量从蓝移发射体传递到红移吸收体,推动了广泛的光子应用。二维(2D)半导体为在原子尺度极限内探索新型能量转移机制提供了独特机遇。在此,我们设计了一种平面光学微腔限制的MoS/hBN/WS异质结,它实现了供体激子、受体激子和腔光子模式之间的强耦合。这种结构展示了一种通过极化子弛豫的非常规能量转移,以创纪录的约440的增强因子使MoS变亮,即比迄今报道的数据高出两个数量级。极化子弛豫具有约1.3 ps的短特征时间,这是由显著增强的支内和支间激子 - 激子散射导致的。通过结合实验和理论结果,极化子弛豫动力学在相图中与拉比能量相关。这项研究为高亮度极化子光源和超快极化子载流子动力学开辟了微腔二维半导体异质结的新方向。