König Jonas K, Fitzgerald Jamie M, Malic Ermin
Fachbereich Physik, Philipps-Universität, Marburg 35032, Germany.
Nano Lett. 2025 May 28;25(21):8519-8526. doi: 10.1021/acs.nanolett.5c00910. Epub 2025 May 13.
Layered two-dimensional (2D) organic-inorganic perovskite semiconductors support strongly confined excitons that offer significant potential for ultrathin polaritonic devices due to their tunability and huge oscillator strength. The application of a magnetic field has proven to be an invaluable tool for investigating the exciton fine structure observed in these materials, yet the combination of an in-plane magnetic field and the strong coupling regime has remained largely unexplored. In this work, we combine microscopic theory with a rigorous solution of Maxwell's equations to model the magneto-optics of exciton polaritons in 2D perovskites. We predict that the brightened dark exciton state can enter the strong coupling regime. Furthermore, the magnetic-field-induced mixing of polarization selection rules and the breaking of in-plane symmetry lead to highly anisotropic polariton branches. This study contributes to a better understanding of the exciton fine structure in 2D perovskites and demonstrates the cavity control of anisotropic and polarization-sensitive exciton polaritons.
层状二维有机-无机钙钛矿半导体支持强受限激子,由于其可调谐性和巨大的振子强度,这些激子为超薄极化子器件提供了巨大潜力。事实证明,磁场的应用是研究这些材料中激子精细结构的宝贵工具,然而,面内磁场与强耦合 regime 的结合在很大程度上仍未得到探索。在这项工作中,我们将微观理论与麦克斯韦方程组的严格解相结合,以模拟二维钙钛矿中激子极化子的磁光特性。我们预测,被照亮的暗激子态可以进入强耦合 regime。此外,磁场引起的偏振选择规则混合和面内对称性的破坏导致了高度各向异性的极化子分支。这项研究有助于更好地理解二维钙钛矿中的激子精细结构,并展示了对各向异性和偏振敏感的激子极化子的腔控制。