Physics Department, University of Michigan, Ann Arbor, MI, USA.
Department of Physics, Xiamen University, Xiamen, China.
Nature. 2021 Mar;591(7848):61-65. doi: 10.1038/s41586-021-03228-5. Epub 2021 Mar 3.
Controlling matter-light interactions with cavities is of fundamental importance in modern science and technology. This is exemplified in the strong-coupling regime, where matter-light hybrid modes form, with properties that are controllable by optical-wavelength photons. By contrast, matter excitations on the nanometre scale are harder to access. In two-dimensional van der Waals heterostructures, a tunable moiré lattice potential for electronic excitations may form, enabling the generation of correlated electron gases in the lattice potentials. Excitons confined in moiré lattices have also been reported, but no cooperative effects have been observed and interactions with light have remained perturbative. Here, by integrating MoSe-WS heterobilayers in a microcavity, we establish cooperative coupling between moiré-lattice excitons and microcavity photons up to the temperature of liquid nitrogen, thereby integrating versatile control of both matter and light into one platform. The density dependence of the moiré polaritons reveals strong nonlinearity due to exciton blockade, suppressed exciton energy shift and suppressed excitation-induced dephasing, all of which are consistent with the quantum confined nature of the moiré excitons. Such a moiré polariton system combines strong nonlinearity and microscopic-scale tuning of matter excitations using cavity engineering and long-range light coherence, providing a platform with which to study collective phenomena from tunable arrays of quantum emitters.
利用腔来控制物质-光相互作用在现代科学和技术中具有重要的基础地位。在强耦合 regime 中,这种作用得到了很好的体现,在这个 regime 中,物质-光混合模式形成,其性质可以通过光波长光子来控制。相比之下,纳米尺度上的物质激发则更难接近。在二维范德瓦尔斯异质结构中,可调谐的莫尔晶格势可能会形成,从而可以在晶格势中产生关联电子气体。莫尔晶格中的激子也已经被报道过,但还没有观察到协同效应,并且与光的相互作用仍然是微扰的。在这里,通过在微腔中集成 MoSe-WS 异质双层,我们在莫尔晶格激子和微腔光子之间建立了协同耦合,直至液氮温度,从而将物质和光的多种控制集成到一个平台中。莫尔极化激元的密度依赖性由于激子阻塞而表现出强烈的非线性,抑制了激子能量位移和激发诱导的退相,所有这些都与莫尔激子的量子限制性质一致。这样的莫尔极化激元系统结合了腔工程和长程光相干性对物质激发的强非线性和微观尺度调谐,为研究可调谐量子发射器阵列中的集体现象提供了一个平台。