Suppr超能文献

基于卫星的集成智能方法在森林火灾预测中的应用:以伊朗赫卡尼亚森林为例。

Satellite-based ensemble intelligent approach for predicting forest fire: a case of the Hyrcanian forest in Iran.

机构信息

Department of Environmental Resources Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.

Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Environ Sci Pollut Res Int. 2024 Mar;31(15):22830-22846. doi: 10.1007/s11356-024-32615-4. Epub 2024 Feb 27.

Abstract

A machine learning-based approach is applied to simulate and forecast forest fires in the Golestan province in Iran. A dataset for no-fire, medium confidence (MC) fire events, and high confidence (HC) fire events is constructed from MODIS-MOD14A2. Nine climate variables from NASA's FLDAS are used as input variables, and 12 dates and 915 study points are considered. Three machine learning ensemble multi-label classifiers, gradient boosting (GBC), random forest (RFC), and extremely randomized tree (ETC), are used for forest fire simulation for the period 2000 to 2021, and ETC is found to be the most accurate classifier. Future fire projection for the near-future period of 2030 to 2050 is carried out with the ETC model, using CMIP6 EC-Earth3-SSP245 General Circulation Model (GCM) data. It is projected that MC forest fire occurrences will decrease, while HC forest fire occurrences will increase, and that the summer months, especially September, will be the most affected by fire.

摘要

一种基于机器学习的方法被应用于模拟和预测伊朗戈勒斯坦省的森林火灾。从中分辨率成像光谱仪 - 火灾监测 14A2 构建了无火灾、中等置信度(MC)火灾事件和高置信度(HC)火灾事件的数据集。使用 NASA 的 FLDAS 的九个气候变量作为输入变量,考虑了 12 个日期和 915 个研究点。梯度提升(GBC)、随机森林(RFC)和极端随机树(ETC)三种机器学习集成多标签分类器用于 2000 年至 2021 年的森林火灾模拟,结果发现 ETC 是最准确的分类器。使用 CMIP6 EC-Earth3-SSP245 全球环流模型(GCM)数据,ETC 模型对 2030 年至 2050 年的近期进行了未来火灾预测。预计 MC 森林火灾发生的次数将会减少,而 HC 森林火灾发生的次数将会增加,夏季,尤其是 9 月,将是火灾最严重的时期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验