Suppr超能文献

基于MRI的放射组学特征用于识别质子放疗后复发性前列腺癌。

MRI-based radiomic features for identifying recurrent prostate cancer after proton radiation therapy.

作者信息

Gumus Kazim Z, Contreras Samuel Serrano, Al-Toubat Mohammed, Harmon Ira, Hernandez Mauricio, Ozdemir Savas, Kumar Sindhu, Yuruk Nurcan, Mete Mutlu, Balaji K C, Bandyk Mark, Gopireddy Dheeraj R

机构信息

Department of Radiology, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, USA.

Department of Urology, University of Florida College of Medicine-Jacksonville, Jacksonville, Florida, USA.

出版信息

J Appl Clin Med Phys. 2024 Feb 26;25(3):e14293. doi: 10.1002/acm2.14293.

Abstract

PURPOSE

Magnetic Resonance Imaging (MRI) evaluation of recurrent prostate cancer (PCa) following proton beam therapy is challenging due to radiation-induced tissue changes. This study aimed to evaluate MRI-based radiomic features so as to identify the recurrent PCa after proton therapy.

METHODS

We retrospectively studied 12 patients with biochemical recurrence (BCR) following proton therapy. Two experienced radiologists identified prostate lesions from multi-parametric MRI (mpMRI) images post-proton therapy and marked control regions of interest (ROIs) on the contralateral side of the prostate gland. A total of 210 radiomic features were extracted from lesions and control regions on the T2-weighted (T2WI) and Apparent Diffusion Coefficient (ADC) image series. Recursive Feature Elimination with Cross-Validation method (RFE-CV) was used for feature selection. A Multilayer Perceptron (MLP) neural network was developed to classify three classes: cancerous, benign, and healthy tissue. The 12-core biopsy results were used as the gold standard for the segmentations. The classifier performance was measured using specificity, sensitivity, the area under receiver operating characteristic curve (AUC), and other statistical indicators.

RESULTS

Based on biopsy results, 10 lesions were identified as PCa recurrence while eight lesions were confirmed to be benign. Ten radiomic features (10/210) were selected to build the multi-class classifier. The radiomics classifier gave an accuracy of 0.83 in identifying cancerous, benign, and healthy tissue with a sensitivity of 0.80 and specificity of 0.85. The model yielded an AUC of 0.87, 95% CI [0.72-1.00] in differentiating cancer from the benign and healthy tissues.

CONCLUSIONS

Our proof-of-concept study demonstrates the potential of using radiomic features as part of the differential diagnosis of PCa on mpMRI following proton therapy. The results need to be validated in a larger cohort.

摘要

目的

由于质子束治疗引起的组织变化,对质子束治疗后复发性前列腺癌(PCa)进行磁共振成像(MRI)评估具有挑战性。本研究旨在评估基于MRI的放射组学特征,以识别质子治疗后的复发性PCa。

方法

我们回顾性研究了12例质子治疗后发生生化复发(BCR)的患者。两名经验丰富的放射科医生从质子治疗后的多参数MRI(mpMRI)图像中识别前列腺病变,并在前列腺对侧标记感兴趣的对照区域(ROIs)。从T2加权(T2WI)和表观扩散系数(ADC)图像系列的病变和对照区域中提取了总共210个放射组学特征。采用带交叉验证的递归特征消除法(RFE-CV)进行特征选择。开发了一个多层感知器(MLP)神经网络来对癌组织、良性组织和健康组织三类进行分类。12芯活检结果用作分割的金标准。使用特异性、敏感性、受试者操作特征曲线下面积(AUC)和其他统计指标来衡量分类器性能。

结果

根据活检结果,10个病变被确定为PCa复发,而8个病变被确认为良性。选择了10个放射组学特征(10/210)来构建多类分类器。放射组学分类器在识别癌组织、良性组织和健康组织方面的准确率为0.83,敏感性为0.80,特异性为0.85。该模型在区分癌组织与良性组织和健康组织时的AUC为0.87,95%CI[0.72-1.00]。

结论

我们的概念验证研究证明了使用放射组学特征作为质子治疗后mpMRI上PCa鉴别诊断一部分的潜力。结果需要在更大的队列中进行验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b87/10930012/160a324b1ed8/ACM2-25-e14293-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验