Suppr超能文献

微谐振器中驻波模式的实时成像。

Real-time imaging of standing-wave patterns in microresonators.

作者信息

Yan Haochen, Ghosh Alekhya, Pal Arghadeep, Zhang Hao, Bi Toby, Ghalanos George, Zhang Shuangyou, Hill Lewis, Zhang Yaojing, Zhuang Yongyong, Xavier Jolly, Del'Haye Pascal

机构信息

Max Planck Institute for the Science of Light, Erlangen 91058, Germany.

Department of Physics, Friedrich Alexander University, Erlangen-Nuremberg 91058, Germany.

出版信息

Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2313981121. doi: 10.1073/pnas.2313981121. Epub 2024 Feb 27.

Abstract

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators. The standing wave pattern is generated through bidirectional pumping of a microresonator, and the scattered light from the microresonator is collected by a short-wave infrared (SWIR) camera. The recorded scattering patterns are wavelength dependent, and the scattered intensity exhibits a linear relation with the circulating power within the microresonator. By modulating the relative phase between the two pump waves, we can control the generated standing waves' movements and characterize the resonator with the SWIR camera. The visualized standing wave enables subwavelength distance measurements of scattering targets with nanometer-level accuracy. This work opens broad avenues for applications in on-chip near-field (bio)sensing, real-time characterization of photonic integrated circuits, and backscattering control in telecom systems.

摘要

微谐振器动力学的实时表征对许多应用都很重要。特别是,它对于近场传感和理解光与物质的相互作用至关重要。在此,我们报告了通过相机辅助对光学环形谐振器中的驻波模式进行成像和分析。驻波模式是通过对微谐振器进行双向泵浦产生的,微谐振器的散射光由短波红外(SWIR)相机收集。记录的散射模式与波长有关,并且散射强度与微谐振器内的循环功率呈线性关系。通过调制两个泵浦波之间的相对相位,我们可以控制所产生驻波的运动,并利用SWIR相机对谐振器进行表征。可视化的驻波能够以纳米级精度对散射目标进行亚波长距离测量。这项工作为片上近场(生物)传感、光子集成电路的实时表征以及电信系统中的反向散射控制等应用开辟了广阔的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea2/10927573/177cb364014a/pnas.2313981121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验