Suppr超能文献

神经营养因子预处理的间充质干细胞衍生的外泌体功能化 3D 打印分级多孔支架具有神经促进特性,可增强神经支配骨再生。

Nerve Growth Factor-Preconditioned Mesenchymal Stem Cell-Derived Exosome-Functionalized 3D-Printed Hierarchical Porous Scaffolds with Neuro-Promotive Properties for Enhancing Innervated Bone Regeneration.

机构信息

Department of Oral and Maxillofacial Implantology, Shanghai PerioImplant Innovation Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.

Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.

出版信息

ACS Nano. 2024 Mar 12;18(10):7504-7520. doi: 10.1021/acsnano.3c11890. Epub 2024 Feb 27.

Abstract

The essential role of the neural network in enhancing bone regeneration has often been overlooked in biomaterial design, leading to delayed or compromised bone healing. Engineered mesenchymal stem cells (MSCs)-derived exosomes are becoming increasingly recognized as potent cell-free agents for manipulating cellular behavior and improving therapeutic effectiveness. Herein, MSCs are stimulated with nerve growth factor (NGF) to regulate exosomal cargoes to improve neuro-promotive potential and facilitate innervated bone regeneration. cell experiments showed that the NGF-stimulated MSCs-derived exosomes (N-Exos) obviously improved the cellular function and neurotrophic effects of the neural cells, and consequently, the osteogenic potential of the osteo-reparative cells. Bioinformatic analysis by miRNA sequencing and pathway enrichment revealed that the beneficial effects of N-Exos may partly be ascribed to the NGF-elicited multicomponent exosomal miRNAs and the subsequent regulation and activation of the MAPK and PI3K-Akt signaling pathways. On this basis, N-Exos were delivered on the micropores of the 3D-printed hierarchical porous scaffold to accomplish the sustained release profile and extended bioavailability. In a rat model with a distal femoral defect, the N-Exos-functionalized hierarchical porous scaffold significantly induced neurovascular structure formation and innervated bone regeneration. This study provided a feasible strategy to modulate the functional cargoes of MSCs-derived exosomes to acquire desirable neuro-promotive and osteogenic potential. Furthermore, the developed N-Exos-functionalized hierarchical porous scaffold may represent a promising neurovascular-promotive bone reparative scaffold for clinical translation.

摘要

神经网络在增强骨再生方面的重要作用在生物材料设计中经常被忽视,导致骨愈合延迟或受损。工程间充质干细胞(MSC)衍生的外泌体作为一种强大的无细胞因子,越来越受到关注,可用于操纵细胞行为和提高治疗效果。在此,通过神经生长因子(NGF)刺激 MSC 来调节外泌体货物,以提高神经营养潜力并促进神经支配的骨再生。细胞实验表明,NGF 刺激的 MSC 衍生外泌体(N-Exos)明显改善了神经细胞的细胞功能和神经营养作用,进而提高了成骨修复细胞的成骨潜力。通过 miRNA 测序和通路富集的生物信息学分析表明,N-Exos 的有益作用可能部分归因于 NGF 引发的多成分外泌体 miRNA,以及随后对 MAPK 和 PI3K-Akt 信号通路的调节和激活。在此基础上,将 N-Exos 递送到 3D 打印分级多孔支架的微孔中,以实现持续释放曲线和延长的生物利用度。在大鼠股骨远端缺损模型中,N-Exos 功能化分级多孔支架显著诱导了神经血管结构的形成和神经支配的骨再生。本研究提供了一种可行的策略来调节 MSC 衍生外泌体的功能货物,以获得理想的神经营养和成骨潜力。此外,开发的 N-Exos 功能化分级多孔支架可能代表一种有前途的神经血管促进骨修复支架,用于临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验