Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
National Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.
Nucleic Acids Res. 2024 May 8;52(8):4375-4392. doi: 10.1093/nar/gkae130.
Accurate chromosome segregation during meiosis requires the establishment of at least one crossover (CO) between each pair of homologous chromosomes. CO formation depends on a group of conserved pro-CO proteins, which colocalize at CO-designated sites during late meiotic prophase I. However, it remains unclear whether these pro-CO proteins form a functional complex and how they promote meiotic CO formation in vivo. Here, we show that COSA-1, a key component required for CO formation, interacts with other pro-CO factors, MSH-5 and ZHP-3, via its N-terminal disordered region. Point mutations that impair these interactions do not affect CO designation, but they strongly hinder the accumulation of COSA-1 at CO-designated sites and result in defective CO formation. These defects can be partially bypassed by artificially tethering an interaction-compromised COSA-1 derivate to ZHP-3. Furthermore, we revealed that the accumulation of COSA-1 into distinct foci is required to assemble functional 'recombination nodules'. These prevent early CO-designated recombination intermediates from being dismantled by the RTEL-1 helicase and protect late recombination intermediates, such as Holliday junctions, until they are resolved by CO-specific resolvases. Altogether, our findings provide insight into COSA-1 mediated pro-CO complex assembly and its contribution to CO formation.
在减数分裂过程中,准确的染色体分离需要在每对同源染色体之间建立至少一个交叉(CO)。CO 的形成取决于一组保守的前 CO 蛋白,这些蛋白在减数分裂前期 I 的晚期在 CO 指定的位置共定位。然而,这些前 CO 蛋白是否形成一个功能复合物,以及它们如何在体内促进减数分裂 CO 的形成,目前仍不清楚。在这里,我们表明,COSA-1 是 CO 形成所必需的关键组成部分,通过其 N 端无规卷曲区域与其他前 CO 因子 MSH-5 和 ZHP-3 相互作用。破坏这些相互作用的点突变不会影响 CO 指定,但它们强烈阻碍 COSA-1 在 CO 指定位置的积累,并导致 CO 形成缺陷。这些缺陷可以通过人工将相互作用受损的 COSA-1 衍生物与 ZHP-3 连接来部分克服。此外,我们揭示了 COSA-1 积累到不同焦点是组装功能性“重组结节”所必需的。这些防止早期 CO 指定的重组中间体被 RTEL-1 解旋酶拆卸,并保护晚期重组中间体,如 Holliday 接头,直到它们被 CO 特异性的 resolvases 解决。总之,我们的研究结果提供了对 COSA-1 介导的前 CO 复合物组装及其对 CO 形成的贡献的深入了解。