School of Computer Science and Technology, Taiyuan Normal University, Shanxi 030619, People's Republic of China.
Institute of Radiation Medicine, Fudan University, Shanghai 200032, People's Republic of China.
Phys Med Biol. 2024 Mar 14;69(7). doi: 10.1088/1361-6560/ad2d7f.
. Laparoscopic renal unit-preserving resection is a routine and effective means of treating renal tumors. Image segmentation is an essential part before tumor resection. The current segmentation method mainly relies on doctors manual delineation, which is time-consuming, labor-intensive, and influenced by their personal experience and ability. And the image quality of segmentation is low, with problems such as blurred edges, unclear size and shape, which are not conducive to clinical diagnosis.. To address these problems, we propose an automated segmentation method, i.e. the UNet++ algorithm fusing multiscale residuals and dual attention (MRDA_UNet++). It replaces two consecutive 3 × 3 convolutions in UNet++ with the 'MultiRes block' module, which incorporates coordinate attention to fuse features from different scales and suppress the impact of background noise. Furthermore, an attention gate is also added at the short connections to enhance the ability of the network to extract features from the target area.. The experimental results show that MRDA_UNet++ achieves 93.18%, 92.87%, 93.66%, and 92.09% on the real-world dataset for MIoU, Dice, Precision, and Recall, respectively. Compared to the baseline model UNet++ on three public datasets, the MIoU, Dice, and Recall metrics improved by 6.00%, 7.90% and 18.09% respectively for BUSI, 0.39%, 0.27% and 1.03% for Dataset C, and 1.37%, 1.75% and 1.30% for DDTI.. The proposed MRDA_UNet++ exhibits obvious advantages in feature extraction, which can not only significantly reduce the workload of doctors, but also further decrease the risk of misdiagnosis. It is of great value to assist doctors diagnosis in the clinic.
腹腔镜肾单位保留切除术是治疗肾肿瘤的一种常规且有效的方法。图像分割是肿瘤切除前的重要环节。目前的分割方法主要依赖于医生的手动勾画,这种方法既费时费力,又受个人经验和能力的影响,而且分割图像的质量较低,存在边缘模糊、大小和形状不清晰等问题,不利于临床诊断。
为了解决这些问题,我们提出了一种自动化的分割方法,即融合多尺度残差和双注意力的 UNet++算法(MRDA_UNet++)。它用“MultiRes 块”模块替换了 UNet++中的两个连续的 3×3 卷积,该模块结合了坐标注意力,融合来自不同尺度的特征,并抑制背景噪声的影响。此外,还在短连接处添加了一个注意力门,以增强网络从目标区域提取特征的能力。
实验结果表明,MRDA_UNet++在真实数据集上的 MIoU、Dice、Precision 和 Recall 分别达到了 93.18%、92.87%、93.66%和 92.09%。与三个公共数据集上的基线模型 UNet++相比,BUSI 的 MIoU、Dice 和 Recall 分别提高了 6.00%、7.90%和 18.09%,Dataset C 分别提高了 0.39%、0.27%和 1.03%,DDTI 分别提高了 1.37%、1.75%和 1.30%。所提出的 MRDA_UNet++在特征提取方面表现出明显的优势,不仅可以显著减少医生的工作量,而且还可以进一步降低误诊的风险。它在临床上辅助医生诊断具有重要价值。