Suppr超能文献

使用三路径 U 型网络模型进行视网膜图像分割。

Retina image segmentation using the three-path Unet model.

机构信息

School of Artificial Intelligence, Chongqing University of Technology, Chongqing, China.

Chongqing Vocational College of Transportation, Chongqing, China.

出版信息

Sci Rep. 2023 Dec 19;13(1):22579. doi: 10.1038/s41598-023-50141-0.

Abstract

Unsupervised image segmentation is a technique that divides an image into distinct regions or objects without prior labeling. This approach offers flexibility and adaptability to various types of image data. Particularly for large datasets, it eliminates the need for manual labeling, thereby it presents advantages in terms of time and labor costs. However, when applied to retinal image segmentation, challenges arise due to variations in data, presence of noise, and manual threshold adjustments, which can lead to over-segmentation or under-segmentation of small blood vessel boundaries and endpoints. In order to enhance the precision and accuracy of retinal image segmentation, we propose a novel image supervised segmentation network based on three-path Unet model.Firstly, the Haar wavelet transform is employed to extract high-frequency image information, which forms the foundation for the proposed HaarNet, a Unet-inspired architecture. Next, the HaarNet is integrated with the Unet and SegNet frameworks to develop a three-path Unet model, referred to as TP-Unet. Finally, the model is further refined into TP-Unet+AE+DSL by incorporating the advantages of auto-encoding (AE) and deep supervised learning (DSL) techniques, thereby enhancing the overall performance of the system. To evaluate the effectiveness of our proposed model, we conduct experiments using the DRIVE and CHASE public datasets. On the DRIVE dataset, our recommended model achieves a Dice coefficient of 0.8291 and a sensitivity index of 0.8184. These results significantly outperform the Unet model by [Formula: see text] and [Formula: see text], respectively. Furthermore, our model demonstrates excellent performance on the CHASE dataset, with a Dice coefficient of 0.8162, a sensitivity of 0.8242, and an accuracy of 0.9664. These metrics surpass the Unet model by [Formula: see text], [Formula: see text], and [Formula: see text], respectively. Our proposed model provides more accurate and reliable results for retinal vessel segmentation, which holds significant potential for assisting doctors in their diagnosis.

摘要

无监督图像分割是一种无需事先标记即可将图像划分为不同区域或对象的技术。这种方法为各种类型的图像数据提供了灵活性和适应性。特别是对于大型数据集,它消除了手动标记的需要,因此在时间和劳动力成本方面具有优势。然而,当应用于视网膜图像分割时,由于数据变化、存在噪声以及手动阈值调整,会出现挑战,这可能导致小血管边界和端点的过度分割或欠分割。为了提高视网膜图像分割的精度和准确性,我们提出了一种基于三路径 U 型网络的新型图像监督分割网络。首先,使用 Haar 小波变换提取高频图像信息,这为基于 U 型网络的 HaarNet 奠定了基础。接下来,将 HaarNet 与 U 型网络和 SegNet 框架集成,开发了一种三路径 U 型网络模型,称为 TP-Unet。最后,通过结合自动编码(AE)和深度监督学习(DSL)技术的优势,将模型进一步细化为 TP-Unet+AE+DSL,从而提高了系统的整体性能。为了评估我们提出的模型的有效性,我们使用 DRIVE 和 CHASE 公共数据集进行实验。在 DRIVE 数据集上,我们建议的模型的 Dice 系数为 0.8291,灵敏度指数为 0.8184。这些结果分别比 U 型网络模型提高了[Formula: see text]和[Formula: see text]。此外,我们的模型在 CHASE 数据集上表现出色,Dice 系数为 0.8162,灵敏度为 0.8242,准确率为 0.9664。这些指标分别比 U 型网络模型提高了[Formula: see text]、[Formula: see text]和[Formula: see text]。我们提出的模型为视网膜血管分割提供了更准确和可靠的结果,这对于辅助医生诊断具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/10730848/6e0888749a03/41598_2023_50141_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验