Center for Neural Science, New York University, New York, NY 10003.
Center for Neural Science, New York University, New York, NY 10003
J Neurosci. 2024 Apr 17;44(16):e1635232024. doi: 10.1523/JNEUROSCI.1635-23.2024.
Technical advances in artificial manipulation of neural activity have precipitated a surge in studying the causal contribution of brain circuits to cognition and behavior. However, complexities of neural circuits challenge interpretation of experimental results, necessitating new theoretical frameworks for reasoning about causal effects. Here, we take a step in this direction, through the lens of recurrent neural networks trained to perform perceptual decisions. We show that understanding the dynamical system structure that underlies network solutions provides a precise account for the magnitude of behavioral effects due to perturbations. Our framework explains past empirical observations by clarifying the most sensitive features of behavior, and how complex circuits compensate and adapt to perturbations. In the process, we also identify strategies that can improve the interpretability of inactivation experiments.
人工神经活动操作技术的进步促使人们对大脑回路对认知和行为的因果贡献进行了大量研究。然而,神经回路的复杂性使得实验结果的解释变得具有挑战性,这就需要新的理论框架来推理因果效应。在这里,我们通过训练用于进行感知决策的递归神经网络来朝这个方向迈出一步。我们表明,理解网络解决方案所基于的动力系统结构,可以为由于干扰而导致的行为效应的幅度提供一个精确的解释。我们的框架通过阐明行为的最敏感特征以及复杂电路如何补偿和适应干扰来解释过去的经验观察。在此过程中,我们还确定了一些策略,可以提高失活实验的可解释性。