Dehghani MohammadRasool, Jahani Shahryar, Ranjbar Ali
Faculty of Petroleum, Gas and Petrolchemical Engineering, Petroleum Engineering Department, Persian Gulf University, Bushehr, Iran.
Sci Rep. 2024 Feb 27;14(1):4744. doi: 10.1038/s41598-024-55535-2.
Shear wave transit time is a crucial parameter in petroleum engineering and geomechanical modeling with significant implications for reservoir performance and rock behavior prediction. Without accurate shear wave velocity information, geomechanical models are unable to fully characterize reservoir rock behavior, impacting operations such as hydraulic fracturing, production planning, and well stimulation. While traditional direct measurement methods are accurate but resource-intensive, indirect methods utilizing seismic and petrophysical data, as well as artificial intelligence algorithms, offer viable alternatives for shear wave velocity estimation. Machine learning algorithms have been proposed to predict shear wave velocity. However, until now, a comprehensive comparison has not been made on the common methods of machine learning that had an acceptable performance in previous researches. This research focuses on the prediction of shear wave transit time using prevalent machine learning techniques, along with a comparative analysis of these methods. To predict this parameter, various input features have been employed: compressional wave transit time, density, porosity, depth, Caliper log, and Gamma-ray log. Among the employed methods, the random forest approach demonstrated the most favorable performance, yielding R-squared and RMSE values of 0.9495 and 9.4567, respectively. Furthermore, the artificial neural network, LSBoost, Bayesian, multivariate regression, and support vector machine techniques achieved R-squared values of 0.878, 0.8583, 0.8471, 0.847 and 0.7975, RMSE values of 22.4068, 27.8158, 28.0138, 28.0240 and 37.5822, respectively. Estimation analysis confirmed the statistical reliability of the Random Forest model. The formulated strategies offer a promising framework applicable to shear wave velocity estimation in carbonate reservoirs.
剪切波传播时间是石油工程和地质力学建模中的一个关键参数,对储层性能和岩石行为预测具有重要意义。没有准确的剪切波速度信息,地质力学模型就无法全面表征储层岩石行为,从而影响水力压裂、生产规划和油井增产等作业。虽然传统的直接测量方法准确但资源密集,利用地震和岩石物理数据以及人工智能算法的间接方法为剪切波速度估计提供了可行的替代方案。已经提出了机器学习算法来预测剪切波速度。然而,到目前为止,尚未对先前研究中具有可接受性能的常见机器学习方法进行全面比较。本研究重点关注使用流行的机器学习技术预测剪切波传播时间,并对这些方法进行比较分析。为了预测该参数,采用了各种输入特征:纵波传播时间、密度、孔隙度、深度、井径测井和伽马射线测井。在所采用的方法中,随机森林方法表现出最有利的性能,决定系数(R平方)和均方根误差(RMSE)值分别为0.9495和9.4567。此外,人工神经网络、LSBoost、贝叶斯、多元回归和支持向量机技术的决定系数值分别为0.878、0.8583、0.8471、0.847和0.7975,均方根误差值分别为22.4068、27.8158、28.0138、28.0240和37.5822。估计分析证实了随机森林模型的统计可靠性。所制定的策略提供了一个有前景的框架,适用于碳酸盐岩储层的剪切波速度估计。