Suppr超能文献

使用分层集成模型增强岩石抗剪强度预测

Enhancing shear strength predictions of rocks using a hierarchical ensemble model.

作者信息

Ding Xiaohua, Amiri Maryam, Hasanipanah Mahdi

机构信息

School of Mines, China University of Mining and Technology, Xuzhou, 221116, China.

State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, 221116, China.

出版信息

Sci Rep. 2024 Aug 31;14(1):20268. doi: 10.1038/s41598-024-71367-6.

Abstract

Shear strength (SS) parameters are essential for understanding the mechanical behavior of materials, particularly in geotechnical engineering and rock mechanics. This study proposes a novel hierarchical ensemble model (HEM) to predict SS parameters: cohesion ( ) and angle of internal friction ( ). The HEM addresses the limitations of traditional machine learning models. Its performance was validated using leave-one-out cross-validation (LOOCV) and out-of-bag (OOB) evaluation methods. The model's accuracy was assessed with R-squared correlation (R), absolute average relative error percentage (AAREP), Taylor diagrams, and quantile-quantile plots. The computational results demonstrated that the proposed HEM outperforms previous studies using the same database. The model predicted and with R values of 0.93 and 0.979, respectively. The AAREP values were 1.96% for φ and 4.7% for . These results indicate that the HEM significantly improves the prediction quality of and , and exhibits strong generalization capability. Sensitivity analysis revealed that σ_3maxσ3max (maximum principal stress) had the greatest impact on modeling both and . According to uncertainty analysis, the LOOCV and OOB had the widest uncertainty bands for the and parameters, respectively.

摘要

抗剪强度(SS)参数对于理解材料的力学行为至关重要,特别是在岩土工程和岩石力学领域。本研究提出了一种新颖的层次集成模型(HEM)来预测SS参数:黏聚力( )和内摩擦角( )。HEM解决了传统机器学习模型的局限性。其性能通过留一法交叉验证(LOOCV)和袋外(OOB)评估方法进行了验证。使用决定系数(R)、绝对平均相对误差百分比(AAREP)、泰勒图和分位数-分位数图对模型的准确性进行了评估。计算结果表明,所提出的HEM优于使用相同数据库的先前研究。该模型预测 和 的R值分别为0.93和0.979。AAREP值对于φ为1.96%,对于 为4.7%。这些结果表明,HEM显著提高了 和 的预测质量,并具有很强的泛化能力。敏感性分析表明,σ_3maxσ3max(最大主应力)对 和 的建模影响最大。根据不确定性分析,LOOCV和OOB分别对 和 参数具有最宽的不确定性区间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/351e/11366031/bb0b977c8c2a/41598_2024_71367_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验