Ma Fei, Liu Xiao, Wang Shengbo, Li Sien, Dai Cuixia, Meng Jing
School of Computer Science, Qufu Normal University, Rizhao, China.
College Science, Shanghai Institute of Technology, Shanghai, China.
Quant Imaging Med Surg. 2024 Feb 1;14(2):1820-1834. doi: 10.21037/qims-23-1270. Epub 2024 Jan 23.
Diabetic retinopathy (DR) is one of the most common eye diseases. Convolutional neural networks (CNNs) have proven to be a powerful tool for learning DR features; however, accurate DR grading remains challenging due to the small lesions in optical coherence tomography angiography (OCTA) images and the small number of samples.
In this article, we developed a novel deep-learning framework to achieve the fine-grained classification of DR; that is, the lightweight channel and spatial attention network (CSANet). Our CSANet comprises two modules: the baseline model, and the hybrid attention module (HAM) based on spatial attention and channel attention. The spatial attention module is used to mine small lesions and obtain a set of spatial position weights to address the problem of small lesions being ignored during the convolution process. The channel attention module uses a set of channel weights to focus on useful features and suppress irrelevant features.
The extensive experimental results for the OCTA-DR and diabetic retinopathy analysis challenge (DRAC) 2022 data sets showed that the CSANet achieved state-of-the-art DR grading results, showing the effectiveness of the proposed model. The CSANet had an accuracy rate of 97.41% for the OCTA-DR data set and 85.71% for the DRAC 2022 data set.
Extensive experiments using the OCTA-DR and DRAC 2022 data sets showed that the proposed model effectively mitigated the problems of mutual confusion between DRs of different severity and small lesions being neglected in the convolution process, and thus improved the accuracy of DR classification.
糖尿病视网膜病变(DR)是最常见的眼部疾病之一。卷积神经网络(CNN)已被证明是学习DR特征的强大工具;然而,由于光学相干断层扫描血管造影(OCTA)图像中的病变较小且样本数量较少,准确的DR分级仍然具有挑战性。
在本文中,我们开发了一种新颖的深度学习框架来实现DR的细粒度分类;即轻量级通道和空间注意力网络(CSANet)。我们的CSANet由两个模块组成:基线模型和基于空间注意力和通道注意力的混合注意力模块(HAM)。空间注意力模块用于挖掘小病变并获得一组空间位置权重,以解决卷积过程中小病变被忽略的问题。通道注意力模块使用一组通道权重来关注有用特征并抑制无关特征。
针对OCTA-DR和糖尿病视网膜病变分析挑战赛(DRAC)2022数据集的广泛实验结果表明,CSANet取得了领先的DR分级结果,表明了所提出模型的有效性。CSANet在OCTA-DR数据集上的准确率为97.41%,在DRAC 2022数据集上的准确率为85.71%。
使用OCTA-DR和DRAC 2022数据集进行的广泛实验表明,所提出的模型有效地缓解了不同严重程度的DR之间相互混淆以及卷积过程中小病变被忽视的问题,从而提高了DR分类的准确性。