Charilaou Paris, Battat Robert
Jill Roberts Center for Inflammatory Bowel Disease - Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, United States.
World J Gastroenterol. 2022 Feb 7;28(5):605-607. doi: 10.3748/wjg.v28.i5.605.
Machine learning models may outperform traditional statistical regression algorithms for predicting clinical outcomes. Proper validation of building such models and tuning their underlying algorithms is necessary to avoid over-fitting and poor generalizability, which smaller datasets can be more prone to. In an effort to educate readers interested in artificial intelligence and model-building based on machine-learning algorithms, we outline important details on cross-validation techniques that can enhance the performance and generalizability of such models.
在预测临床结果方面,机器学习模型可能优于传统的统计回归算法。对构建此类模型并调整其基础算法进行适当验证,对于避免过拟合和较差的泛化能力(较小数据集更容易出现这种情况)是必要的。为了向对基于机器学习算法的人工智能和模型构建感兴趣的读者进行科普,我们概述了交叉验证技术的重要细节,这些技术可以提高此类模型的性能和泛化能力。