Suppr超能文献

机器学习模型与过拟合考量

Machine learning models and over-fitting considerations.

作者信息

Charilaou Paris, Battat Robert

机构信息

Jill Roberts Center for Inflammatory Bowel Disease - Division of Gastroenterology & Hepatology, Weill Cornell Medicine, New York, NY 10021, United States.

出版信息

World J Gastroenterol. 2022 Feb 7;28(5):605-607. doi: 10.3748/wjg.v28.i5.605.

Abstract

Machine learning models may outperform traditional statistical regression algorithms for predicting clinical outcomes. Proper validation of building such models and tuning their underlying algorithms is necessary to avoid over-fitting and poor generalizability, which smaller datasets can be more prone to. In an effort to educate readers interested in artificial intelligence and model-building based on machine-learning algorithms, we outline important details on cross-validation techniques that can enhance the performance and generalizability of such models.

摘要

在预测临床结果方面,机器学习模型可能优于传统的统计回归算法。对构建此类模型并调整其基础算法进行适当验证,对于避免过拟合和较差的泛化能力(较小数据集更容易出现这种情况)是必要的。为了向对基于机器学习算法的人工智能和模型构建感兴趣的读者进行科普,我们概述了交叉验证技术的重要细节,这些技术可以提高此类模型的性能和泛化能力。

相似文献

1
Machine learning models and over-fitting considerations.
World J Gastroenterol. 2022 Feb 7;28(5):605-607. doi: 10.3748/wjg.v28.i5.605.
2
[Machine learning and its epidemiological applications].
Zhonghua Liu Xing Bing Xue Za Zhi. 2021 Sep 10;42(9):1689-1694. doi: 10.3760/cma.j.cn112338-20200722-00970.
4
Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters.
Sensors (Basel). 2021 Oct 20;21(21):6967. doi: 10.3390/s21216967.
6
Artificial Intelligence (AI) and Retinal Optical Coherence Tomography (OCT).
Semin Ophthalmol. 2021 May 19;36(4):341-345. doi: 10.1080/08820538.2021.1901123. Epub 2021 Mar 18.
7
Machine Learning Principles for Radiology Investigators.
Acad Radiol. 2020 Jan;27(1):13-25. doi: 10.1016/j.acra.2019.07.030.
8
Deciphering musculoskeletal artificial intelligence for clinical applications: how do I get started?
Skeletal Radiol. 2022 Feb;51(2):271-278. doi: 10.1007/s00256-021-03850-4. Epub 2021 Jun 30.
9
Artificial Intelligence, Machine Learning and Calculation of Intraocular Lens Power.
Klin Monbl Augenheilkd. 2020 Dec;237(12):1430-1437. doi: 10.1055/a-1298-8121. Epub 2020 Nov 23.
10
Artificial Intelligence in the Clinical Laboratory: An Overview with Frequently Asked Questions.
Clin Lab Med. 2023 Mar;43(1):1-16. doi: 10.1016/j.cll.2022.09.002. Epub 2022 Dec 13.

引用本文的文献

2
Proteomic Analysis of BMAC from the Iliac Crest and Humeral Head Using Support Vector Machines.
ACS Omega. 2025 Jul 29;10(31):34975-34985. doi: 10.1021/acsomega.5c03945. eCollection 2025 Aug 12.
3
Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort.
J Electr Bioimpedance. 2025 Aug 4;16(1):89-98. doi: 10.2478/joeb-2025-0012. eCollection 2025 Jan.
4
A systematic review of data and models for predicting food flavor and texture.
Curr Res Food Sci. 2025 Jun 26;11:101127. doi: 10.1016/j.crfs.2025.101127. eCollection 2025.
9
Machine learning combined with GC-FID for discrimination of different categories of maotai-flavor baijiu.
Food Chem X. 2025 May 15;28:102555. doi: 10.1016/j.fochx.2025.102555. eCollection 2025 May.

本文引用的文献

1
Deep learning conventional learning algorithms for clinical prediction in Crohn's disease: A proof-of-concept study.
World J Gastroenterol. 2021 Oct 14;27(38):6476-6488. doi: 10.3748/wjg.v27.i38.6476.
2
Artificial Intelligence Enhances Studies on Inflammatory Bowel Disease.
Front Bioeng Biotechnol. 2021 Jul 8;9:635764. doi: 10.3389/fbioe.2021.635764. eCollection 2021.
3
Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy (Basel). 2020 Dec 25;23(1):18. doi: 10.3390/e23010018.
6
A simulation study of the number of events per variable in logistic regression analysis.
J Clin Epidemiol. 1996 Dec;49(12):1373-9. doi: 10.1016/s0895-4356(96)00236-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验