Bidwai Pooja, Gite Shilpa, Pradhan Biswajeet, Gupta Harshita, Alamri Abdullah
Symbiosis Centre for Applied Artificial Intelligence (SCAAI) Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India.
Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115 India.
MethodsX. 2024 Aug 20;13:102910. doi: 10.1016/j.mex.2024.102910. eCollection 2024 Dec.
The prevalence of diabetic retinopathy (DR) among the geriatric population poses significant challenges for early detection and management. Optical Coherence Tomography Angiography (OCTA) combined with Deep Learning presents a promising avenue for improving diagnostic accuracy in this vulnerable demographic. In this method, we propose an innovative approach utilizing OCTA images and Deep Learning algorithms to detect diabetic retinopathy in geriatric patients. We have collected 262 OCTA scans of 179 elderly individuals, both with and without diabetes, and trained a deep-learning model to classify retinopathy severity levels. Convolutional Neural Network (CNN) models: Inception V3, ResNet-50, ResNet50V2, VggNet-16, VggNet-19, DenseNet121, DenseNet201, EfficientNetV2B0, are trained to extract features and further classify them. Here we demonstrate:•The potential of OCTA and Deep Learning in enhancing geriatric eye care at the very initial stage.•The importance of technological advancements in addressing age-related ocular diseases and providing reliable assistance to clinicians for DR classification.•The efficacy of this approach in accurately identifying diabetic retinopathy stages, thereby facilitating timely interventions, and preventing vision loss in the elderly population.
老年人群中糖尿病视网膜病变(DR)的患病率给早期检测和管理带来了重大挑战。光学相干断层扫描血管造影(OCTA)与深度学习相结合,为提高这一脆弱人群的诊断准确性提供了一条有前景的途径。在这种方法中,我们提出了一种创新方法,利用OCTA图像和深度学习算法来检测老年患者的糖尿病视网膜病变。我们收集了179名老年人(包括有糖尿病和无糖尿病者)的262次OCTA扫描,并训练了一个深度学习模型来对视网膜病变严重程度进行分类。对卷积神经网络(CNN)模型:Inception V3、ResNet-50、ResNet50V2、VggNet-16、VggNet-19、DenseNet121、DenseNet201、EfficientNetV2B0进行训练以提取特征并进一步分类。在此我们展示:
• OCTA和深度学习在最早期增强老年眼部护理方面的潜力。
• 技术进步在解决与年龄相关的眼部疾病以及为临床医生进行DR分类提供可靠帮助方面的重要性。
• 这种方法在准确识别糖尿病视网膜病变阶段方面的有效性,从而促进及时干预,并预防老年人群视力丧失。