Zhang Hong, Wang Mingli, Song Bin, Huang Xiang-Long, Zhang Wenli, Zhang Erhuan, Cheng Yingwen, Lu Ke
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China.
Angew Chem Int Ed Engl. 2024 May 6;63(19):e202402274. doi: 10.1002/anie.202402274. Epub 2024 Mar 28.
The high theoretical energy density (1274 Wh kg) and high safety enable the all-solid-state Na-S batteries with great promise for stationary energy storage system. However, the uncontrollable solid-liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na-S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full NaS to NaS low-kinetic conversion during discharging. The electrodeposited NaS on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na-S pouch cells with an attractive specific capacity of 876 mAh g and a high energy of 608 Wh kg (172 Wh kg, based on the total mass of cathode and anode) at 60 °C are demonstrated.
高理论能量密度(1274 Wh kg)和高安全性使全固态钠硫电池在固定储能系统方面极具前景。然而,不可控的固 - 液 - 固多相转变及其相关的缓慢多硫化物氧化还原动力学,在调整用于实际钠硫电化学的硫形态转化途径方面构成了巨大挑战。在此,我们提出了一种用于基质的新设计方法,该基质具有分离的双催化位点,可串联控制多步多硫化物转化,并在电池循环过程中引导准固态可逆硫转化。研究表明,N、P杂原子热点更有利于催化长链多硫化物的还原,而PtNi纳米晶体在放电过程中操控直接且完全的NaS到NaS的低动力学转化。电沉积在强耦合的PtNi和N、P共掺杂碳主体上的NaS具有极高的电活性,并且在电池充电过程中可以很容易地恢复为S,而不会使活性物种钝化,这实现了真正的串联电催化准固态硫转化机制。因此,展示了全固态软包钠硫电池在60 °C下具有876 mAh g的诱人比容量和608 Wh kg(基于阴极和阳极的总质量为172 Wh kg)的高能量的稳定循环性能。